Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs
DEHGHANI, Hamidreza; ZILIAN, Andreas
2020
 

Documents


Texte intégral
2012.11517.pdf
Postprint Éditeur (5.7 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Hybrid training algorithm; Modified Genetic Algorithm; Multilevel Stochastic Gradient Descent; Artificial Neural Network; Data-driven computational mechanics; Physics Informed ANN
Résumé :
[en] We introduce a hybrid "Modified Genetic Algorithm-Multilevel Stochastic Gradient Descent" (MGA-MSGD) training algorithm that considerably improves accuracy and efficiency of solving 3D mechanical problems described, in strong-form, by PDEs via ANNs (Artificial Neural Networks). This presented approach allows the selection of a number of locations of interest at which the state variables are expected to fulfil the governing equations associated with a physical problem. Unlike classical PDE approximation methods such as finite differences or the finite element method, there is no need to establish and reconstruct the physical field quantity throughout the computational domain in order to predict the mechanical response at specific locations of interest. The basic idea of MGA-MSGD is the manipulation of the learnable parameters’ components responsible for the error explosion so that we can train the network with relatively larger learning rates which avoids trapping in local minima. The proposed training approach is less sensitive to the learning rate value, training points density and distribution, and the random initial parameters. The distance function to minimise is where we introduce the PDEs including any physical laws and conditions (so-called, Physics Informed ANN). The Genetic algorithm is modified to be suitable for this type of ANN in which a Coarse-level Stochastic Gradient Descent (CSGD) is exploited to make the decision of the offspring qualification. Employing the presented approach, a considerable improvement in both accuracy and efficiency, compared with standard training algorithms such classical SGD and Adam optimiser, is observed. The local displacement accuracy is studied and ensured by introducing the results of Finite Element Method (FEM) at sufficiently fine mesh as the reference displacements. A slightly more complex problem is solved ensuring the feasibility of the methodology
Centre de recherche :
University of Luxembourg: Institute of Computational Engineering and Sciences
Disciplines :
Ingénierie civile
Sciences informatiques
Ingénierie mécanique
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DEHGHANI, Hamidreza ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Langue du document :
Anglais
Titre :
A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs
Date de publication/diffusion :
décembre 2020
Nombre de pages :
29
Focus Area :
Computational Sciences
Physics and Materials Science
Organisme subsidiant :
Fonds National de la Recherche - FnR (PRIDE17/12252781)
Luxembourg Ministry of Economy (FEDER 2018-04-024)
Disponible sur ORBilu :
depuis le 29 décembre 2020

Statistiques


Nombre de vues
178 (dont 7 Unilu)
Nombre de téléchargements
108 (dont 3 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu