Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Semantic situation awareness of ellipse shapes via deep learning for multirotor aerial robots with a 2D LIDAR
SANCHEZ LOPEZ, Jose Luis; CASTILLO LOPEZ, Manuel; VOOS, Holger
2020In 2020 International Conference on Unmanned Aircraft Systems (ICUAS)
Peer reviewed
 

Documents


Texte intégral
sanchez-lopez2020.pdf
Postprint Éditeur (2.98 MB)
Demander un accès
Parties de texte intégral
root.pdf
Preprint Auteur (3.19 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] In this work, we present a semantic situation awareness system for multirotor aerial robots equipped with a 2D LIDAR sensor, focusing on the understanding of the environment, provided to have a drift-free precise localization of the robot (e.g. given by GNSS/INS or motion capture system). Our algorithm generates in real-time a semantic map of the objects of the environment as a list of ellipses represented by their radii, and their pose and velocity, both in world coordinates. Two different Convolutional Neural Network (CNN) architectures are proposed and trained using an artificially generated dataset and a custom loss function, to detect ellipses in a segmented (i.e. with one single object) LIDAR measurement. In cascade, a specifically designed indirect-EKF estimates the ellipses based semantic map in world coordinates, as well as their velocity. We have quantitative and qualitatively evaluated the performance of our proposed situation awareness system. Two sets of Software-In-The-Loop simulations using CoppeliaSim with one and multiple static and moving cylindrical objects are used to evaluate the accuracy and performance of our algorithm. In addition, we have demonstrated the robustness of our proposed algorithm when handling real environments thanks to real laboratory experiments with non-cylindrical static (i.e. a barrel) objects and moving persons.
Disciplines :
Ingénierie aérospatiale
Auteur, co-auteur :
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
CASTILLO LOPEZ, Manuel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Semantic situation awareness of ellipse shapes via deep learning for multirotor aerial robots with a 2D LIDAR
Date de publication/diffusion :
septembre 2020
Nom de la manifestation :
2020 International Conference on Unmanned Aircraft Systems (ICUAS)
Lieu de la manifestation :
Athens, Grèce
Date de la manifestation :
from 01-09-2020 to 04-09-2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
2020 International Conference on Unmanned Aircraft Systems (ICUAS)
Pagination :
1014-1023
Peer reviewed :
Peer reviewed
Projet FnR :
FNR10484117 - Robust Emergency Sense-and-avoid Capability For Small Remotely Piloted Aerial Systems, 2015 (01/02/2016-31/01/2019) - Holger Voos
Disponible sur ORBilu :
depuis le 21 décembre 2020

Statistiques


Nombre de vues
189 (dont 30 Unilu)
Nombre de téléchargements
341 (dont 33 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
2
citations OpenAlex
 
6
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu