Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
An MDE Method for Improving Deep Learning Dataset Requirements Engineering using Alloy and UML
RIES, Benoit; GUELFI, Nicolas; JAHIC, Benjamin
2021In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development
Peer reviewed
 

Documents


Texte intégral
2021_MODELSWARD_MDE_Method_Improving_ML_Datasets_Requirements_Engineering.pdf
Preprint Auteur (1.51 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Model-Driven Engineering; Software Engineering; Requirements Engineering; EMF; Sirius; Alloy
Résumé :
[en] Since the emergence of deep learning (DL) a decade ago, only few software engineering development methods have been defined for systems based on this machine learning approach. Moreover, rare are the DL approaches addressing specifically requirements engineering. In this paper, we define a model-driven engineering (MDE) method based on traditional requirements engineering to improve datasets requirements engineering. Our MDE method is composed of a process supported by tools to aid customers and analysts in eliciting, specifying and validating dataset structural requirements for DL-based systems. Our model driven engineering approach uses the UML semi-formal modeling language for the analysis of datasets structural requirements, and the Alloy formal language for the requirements model execution based on our informal translational semantics. The model executions results are then presented to the customer for improving the dataset validation activity. Our approach aims at validating DL-based dataset structural requirements by modeling and instantiating their datatypes. We illustrate our approach with a case study on the requirements engineering of the structure of a dataset for classification of five-segments digits images.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
RIES, Benoit ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
GUELFI, Nicolas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
JAHIC, Benjamin ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
An MDE Method for Improving Deep Learning Dataset Requirements Engineering using Alloy and UML
Date de publication/diffusion :
février 2021
Nom de la manifestation :
9th International Conference on Model-Driven Engineering and Software Development
Date de la manifestation :
from 08-02-2021 to 10-02-2021
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development
Maison d'édition :
SCITEPRESS
ISBN/EAN :
978-989-758-487-9
Pagination :
41-52
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 17 décembre 2020

Statistiques


Nombre de vues
741 (dont 76 Unilu)
Nombre de téléchargements
472 (dont 27 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
14
OpenCitations
 
1
citations OpenAlex
 
14

Bibliographie


Publications similaires



Contacter ORBilu