Fault diagnosis; Sensor placement; Fuel Cell Systems
Abstract :
[en] The problem of optimal sensor placement for FDI consists in determining the set of sensors that minimizes a pre-defined cost function satisfying at the same time a pre-established set of FDI specifications for a given set of faults. This paper recalls three model-based optimal sensor location approaches: an Incremental search, a Heuristic search and a Binary Integer Linear Programming (BILP) formulation. The main contribution of this paper is a comparative study that addresses efficiency, flexibility and other issues. The performance of the approaches is demonstrated by an application to a fuel cell stack system.
Disciplines :
Computer science
Identifiers :
UNILU:UL-CONFERENCE-2012-304
Author, co-author :
Sarrate, Ramon; Universitat Politècnica de Catalunya > ESAII - SAC
Nejjari, Fatiha; Universitat Politècnica de Catalunya > ESAII - SAC
ROSICH, Albert ; Universitat Politècnica de Catalunya > ESAII - SAC
Language :
English
Title :
Model-based Optimal Sensor Placement Approaches to Fuel Cell Stack System Fault Diagnosis
Publication date :
2012
Event name :
8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process, Safeprocess’12
Event place :
Mexico City, Mexico
Event date :
from 29-08-2012 to 31-08-2012
Audience :
International
Main work title :
Fault Detection, Supervision and Safety of Technical Processes, Volume# 8 | Part# 1
ISBN/EAN :
978-3-902823-09-0
Pages :
96-101
Peer reviewed :
Peer reviewed
Commentary :
8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process, Safeprocess’12
Dulmage, A.L. and Mendelsohn, N.S. (1958). Covering of bipartite graph. Canada J. Math, 10, 527-534.
Fijany, A. and Vatan, F. (2006). A new efficient algorithm for analyzing and optimizing the system of sensors. In Proc. 2006 IEEE Aerospace Conference. Big Sky, Montana, USA.
IBM (2010). IBM ILOG CPLEX optimization studio 12.2. http://www-01.ibm. com/software/integration/optimization/cplex-optimization-studio/.
Krysander, M. (2006). Design and Analysis of Diagnosis Systems Using Structural Analysis. Ph.D. thesis, Linköping Univ., Linköping, Sweden.
Krysander, M., Åslund, J., and Nyberg, M. (2008). An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis. IEEE Trans. Syst., Man, Cybern. A, 38(1).
Krysander, M. and Frisk, E. (2008). Sensor placement for fault diagnosis. IEEE Trans. Syst., Man, Cybern. A, 38(6), 1398-1410.
Nejjari, F., Sarrate, R., and Rosich, A. (2010). Optimal sensor placement for fuel cell system diagnosis using bilp formulation. In 18th Mediterranean Conference on Control and Automation, 1296-1301. Marrakech, Morocco.
Ploix, S., Yassine, A.A., and Flaus, J.M. (2008). An improved algorithm for the design of testable subsystems. In Proc. of 17th IFAC World Congress. Seoul, Korea.
Pukrushpan, J.T., P., H., and Stefanopoulou, A.G. (2004). Analysis for automotive fuel cell systems. Transactions of the ASME, 126, 14-25.
Pulido, B. and Gonzalez, C.A. (2004). Possible conflicts: a compilation technique for consistency-based diagnosis. IEEE Trans. Syst., Man, Cybern. B, 34(5), 2192-2206.
Rosich, A., Sarrate, R., and Nejjari, F. (2009). Optimal sensor placement for FDI using binary integer linear programming. In 20th International Workshop on Principles of Diagnosis (DX-09). Stockholm, Sweden.
Rosich, A., Sarrate, R., Puig, V., and Escobet, T. (2007). Efficient optimal sensor placement for model-based FDI using and incremental algorithm. In Proc. 46th IEEE Conference on Decision and Control, 2590-2595. New Orleans, USA.
Rosich, A., Yassine, A.A., and Ploix, S. (2010). Efficient optimal sensor placement for structural model based diagnosis. In 21th International Workshop on Principles of Diagnosis (DX-10). Portland, USA.
Rosich, A., Frisk, E., Åslund, J., Sarrate, R., and Nejjari, F. (2012). Fault diagnosis based on causal computations. IEEE Trans. Syst., Man, Cybern. A, 42(2), 371-381.
Sarrate, R., Puig, V., Escobet, T., and Rosich, A. (2007). Optimal sensor placement for model-based fault detection and isolation. In Proc. 46th IEEE Conference on Decision and Control, 2584-2589. New Orleans, USA.
Travé-Massuyès, L., Escobet, T., and Olive, X. (2006). Diagnosability analysis based on component supported analytical redundancy relations. IEEE Trans. Syst., Man, Cybern. A, 36(6), 1146-1160.
Wosley, L.A. (1998). Integer Programming. John Wiley & Sons, New York, USA.
Yassine, A.A., Ploix, S., and Flaus, J.M. (2008). A method for sensor placement taking into account diagnosability criteria. Int. J. Appl. Math. Comput. Sci., 18(4), 497-512.