Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Federated Learning For Cyber Security: SOC Collaboration For Malicious URL Detection
Khramtsova, Ekaterina; Hammerschmidt, Christian; LAGRAA, Sofiane et al.
2020In IEEE International Conference on Distributed Computing Systems (ICDCS)
Peer reviewed
 

Documents


Texte intégral
PID6431211.pdf
Postprint Éditeur (979.74 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
cyber-security; federated-learning; machine- learning
Résumé :
[en] Managed security service providers increasingly rely on machine-learning methods to exceed traditional, signature- based threat detection and classification methods. As machine- learning often improves with more data available, smaller orga- nizations and clients find themselves at a disadvantage: Without the ability to share their data and others willing to collaborate, their machine-learned threat detection will perform worse than the same model in a larger organization. We show that Feder- ated Learning, i.e. collaborative learning without data sharing, successfully helps to overcome this problem. Our experiments focus on a common task in cyber security, the detection of unwanted URLs in network traffic seen by security-as-a-service providers. Our experiments show that i) Smaller participants benefit from larger participants ii) Participants seeing different types of malicious traffic can generalize better to unseen types of attacks, increasing performance by 8% to 15% on average, and up to 27% in the extreme case. iii) Participating in Federated training never harms the performance of the locally trained model. In our experiment modeling a security-as-a service setting, Federated Learning increased detection up to 30% for some participants in the scheme. This clearly shows that Federated Learning is a viable approach to address issues of data sharing in common cyber security settings.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Khramtsova, Ekaterina
Hammerschmidt, Christian
LAGRAA, Sofiane ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Federated Learning For Cyber Security: SOC Collaboration For Malicious URL Detection
Date de publication/diffusion :
2020
Nom de la manifestation :
International Workshop on Network Meets Intelligent Computations (NMIC)
Date de la manifestation :
from 29-11-2020 to 01-12-2020
Titre du périodique :
IEEE International Conference on Distributed Computing Systems (ICDCS)
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 05 décembre 2020

Statistiques


Nombre de vues
247 (dont 19 Unilu)
Nombre de téléchargements
1015 (dont 17 Unilu)

citations Scopus®
 
31
citations Scopus®
sans auto-citations
31
citations OpenAlex
 
29
citations WoS
 
19

Bibliographie


Publications similaires



Contacter ORBilu