RIVERA, S., Gurbani, V., LAGRAA, S., IANNILLO, A. K., & STATE, R. (2020). Leveraging eBPF to preserve user privacy for DNS, DoT, and DoH queries. Proceedings of the 15th International Conference on Availability, Reliability and Security. doi:10.1145/3407023.3407041 Peer reviewed |
AMROUCHE, F., LAGRAA, S., FRANK, R., & STATE, R. (2020). Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application. In 91st IEEE Vehicular Technology Conference, VTC Spring 2020, Antwerp, Belgium, May 25-28, 2020. Peer reviewed |
LAGRAA, S., & STATE, R. (2020). Process mining-based approach for investigating malicious login events. In IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, April 20-24, 2020. Peer reviewed |
Khramtsova, E., Hammerschmidt, C., LAGRAA, S., & STATE, R. (2020). Federated Learning For Cyber Security: SOC Collaboration For Malicious URL Detection. IEEE International Conference on Distributed Computing Systems (ICDCS). doi:10.1109/ICDCS47774.2020.00171 Peer reviewed |
RIVERA, S., LAGRAA, S., IANNILLO, A. K., & STATE, R. (2019). Auto-encoding Robot State against Sensor Spoofing Attacks. International Symposium on Software Reliability Engineering. doi:10.1109/ISSREW.2019.00080 Peer reviewed |
RIVERA, S., LAGRAA, S., STATE, R., Nita-Rotaru, C., & BECKER, S. (2019). ROS-Defender: SDN-based Security Policy Enforcement for Robotic Applications. In IEEE Workshop on the Internet of Safe Things, Co-located with IEEE Security and Privacy 2019. Peer reviewed |
RIVERA, S., LAGRAA, S., & STATE, R. (2019). ROSploit: Cybersecurity tool for ROS. In International Conference on Robotic Computing. doi:10.1109/IRC.2019.00077 Peer reviewed |
LAGRAA, S., Chen, Y., & François, J. (2019). Deep mining port scans from darknet. International Journal of Network Management. doi:10.1002/nem.2065 Peer Reviewed verified by ORBi |
LAGRAA, S., Cailac, M., RIVERA, S., Beck, F., & STATE, R. (2019). Real-time attack detection on robot cameras: A self-driving car application. In International Conference on Robotic Computing. doi:10.1109/IRC.2019.00023 Peer reviewed |
Kiouche, A. E., Amrouche, K., Seba, H., & LAGRAA, S. (2019). Une nouvelle approche pour la détection d’anomalies dans les flux de graphes hétérogènes. EGC. Peer reviewed |
KAIAFAS, G., HAMMERSCHMIDT, C., LAGRAA, S., & STATE, R. (2019). An Experimental Analysis of Fraud Detection Methods in Enterprise Telecommunication Data using Unsupervised Outlier Ensembles. In G. KAIAFAS, C. HAMMERSCHMIDT, ... R. STATE, 16th IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2019). Piscataway, United States - New York: Institute of Electrical and Electronics Engineers. Peer reviewed |
AMROUCHE, F., LAGRAA, S., KAIAFAS, G., & STATE, R. (2019). Graph-based malicious login events investigation. In F. AMROUCHE, S. LAGRAA, G. KAIAFAS, ... R. STATE, 16th IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2019). Peer reviewed |
KAIAFAS, G., HAMMERSCHMIDT, C., LAGRAA, S., & STATE, R. (2019). Auto Semi-supervised Outlier Detection for Malicious Authentication Events. ECML PKDD 2019 Workshops. doi:10.1007/978-3-030-43887-6_14 Peer reviewed |
LAGRAA, S., CHARLIER, J. H. J., & STATE, R. (20 August 2018). Knowledge Discovery Approach from Blockchain, Crypto-currencies, and Financial Stock Exchanges [Poster presentation]. 2018 ACM SIGKDD International Conference on Knowledge Discovery and Data mining conference (KDD 2018). |
KAIAFAS, G., VARISTEAS, G., LAGRAA, S., & STATE, R. (2018). Detecting Malicious Authentication Events Trustfully. In G. KAIAFAS, G. VARISTEAS, S. LAGRAA, ... R. STATE, IEEE/IFIP Network Operations and Management Symposium, 23-27 April 2018, Taipei, Taiwan Cognitive Management in a Cyber World. Peer reviewed |
CHARLIER, J. H. J., LAGRAA, S., STATE, R., & Francois, J. (2017). Profiling Smart Contracts Interactions Tensor Decomposition and Graph Mining. In Proceedings of the Second Workshop on MIning DAta for financial applicationS (MIDAS 2017) co-located with the 2017 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2017), Skopje, Macedonia, September 18, 2017 (pp. 31-42). Peer reviewed |
LAGRAA, S., François, J., Lahmadi, A., Minier, M., HAMMERSCHMIDT, C., & STATE, R. (2017). BotGM: Unsupervised Graph Mining to Detect Botnets in Traffic Flows. In CSNet 2017 Conference Proceedings. Peer reviewed |