Poster (Scientific congresses, symposiums and conference proceedings)
Revisiting the Training of Very Deep Neural Networks without Skip Connections
OYEDOTUN, Oyebade; SHABAYEK, Abd El Rahman; AOUADA, Djamila et al.
2021IEEE 2020 International Conference on Pattern Recognition (ICPR)
 

Files


Full Text
ICPR2020_OyedotunShabayekAouadaOttersten.pdf
Author preprint (2.07 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Computer science
Author, co-author :
OYEDOTUN, Oyebade ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
SHABAYEK, Abd El Rahman  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
no
Language :
English
Title :
Revisiting the Training of Very Deep Neural Networks without Skip Connections
Publication date :
2021
Event name :
IEEE 2020 International Conference on Pattern Recognition (ICPR)
Event date :
10-01-2021 to 15-01-2021
FnR Project :
FNR11295431 - Automatic Feature Selection For Visual Recognition, 2016 (01/02/2017-31/01/2021) - Oyebade Oyedotun
Funders :
FNR - Fonds National de la Recherche
Available on ORBilu :
since 11 November 2020

Statistics


Number of views
213 (21 by Unilu)
Number of downloads
318 (19 by Unilu)

OpenAlex citations
 
2
WoS citations
 
0

Bibliography


Similar publications



Contact ORBilu