Paper published in a book (Scientific congresses, symposiums and conference proceedings)
NeuLP: An End-to-End Deep-Learning Model for Link Prediction
Zhong, Zhiqiang; Zhang, Yang; Pang, Jun
2020In Proceedings of the 21st International Conference on Web Information System Engineering (WISE'20)
Peer reviewed
 

Files


Full Text
WISE20a.pdf
Author preprint (934.47 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
Zhong, Zhiqiang ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Zhang, Yang
Pang, Jun  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
yes
Language :
English
Title :
NeuLP: An End-to-End Deep-Learning Model for Link Prediction
Publication date :
2020
Event name :
21st International Conference on Web Information System Engineering
Event date :
2020
Audience :
International
Main work title :
Proceedings of the 21st International Conference on Web Information System Engineering (WISE'20)
Publisher :
Springer
Collection name :
LNCS 12342
Pages :
96-108
Peer reviewed :
Peer reviewed
FnR Project :
FNR10621687 - Security And Privacy For System Protection, 2015 (01/01/2017-30/06/2023) - Sjouke Mauw
Available on ORBilu :
since 23 October 2020

Statistics


Number of views
185 (16 by Unilu)
Number of downloads
228 (13 by Unilu)

Scopus citations®
 
3
Scopus citations®
without self-citations
3

Bibliography


Similar publications



Contact ORBilu