Article (Scientific journals)
Deep network compression with teacher latent subspace learning and LASSO
OYEDOTUN, Oyebade; SHABAYEK, Abd El Rahman; AOUADA, Djamila et al.
2020In Applied Intelligence
Peer Reviewed verified by ORBi
 

Files


Full Text
OyedotunShabayekAouadaOttersten_APIN Journal.pdf
Author preprint (5.88 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Computer science
Author, co-author :
OYEDOTUN, Oyebade ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
SHABAYEK, Abd El Rahman  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
no
Language :
English
Title :
Deep network compression with teacher latent subspace learning and LASSO
Publication date :
September 2020
Journal title :
Applied Intelligence
ISSN :
0924-669X
eISSN :
1573-7497
Publisher :
Kluwer Academic Publishers, Netherlands
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR11295431 - Automatic Feature Selection For Visual Recognition, 2016 (01/02/2017-31/01/2021) - Oyebade Oyedotun
Funders :
FNR - Fonds National de la Recherche
Available on ORBilu :
since 16 October 2020

Statistics


Number of views
239 (29 by Unilu)
Number of downloads
357 (20 by Unilu)

Scopus citations®
 
9
Scopus citations®
without self-citations
8
OpenCitations
 
7
OpenAlex citations
 
9
WoS citations
 
8

Bibliography


Similar publications



Contact ORBilu