Ouvrage publié en tant qu’auteur, traducteur, etc. (Ouvrages)
A generalization of Bohr-Mollerup's theorem for higher order convex functions
MARICHAL, Jean-Luc; Zenaïdi, Naïm
2022Springer, Cham, Switzerland
 

Documents


Texte intégral
Marichal-Zenaïdi2022_Book_AGeneralizationOfBohr-Mollerup.pdf
Postprint Éditeur (3.7 MB)
Télécharger
Parties de texte intégral
00-manuscript.pdf
Postprint Auteur (1.37 MB)
Télécharger

The original publication is available at https://link.springer.com/book/9783030950873


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Difference equation; Higher order convexity; Bohr-Mollerup-Artin's theorem; Krull-Webster's theory; Generalized Stirling's formula; Generalized Stirling's constant; Generalized Euler's constant; Euler's reflection formula; Euler's infinite product; Weierstrass' infinite product; Gauss' multiplication theorem; Gauss' digamma theorem; Raabe's formula; Wallis's product formula; Fontana-Mascheroni's series; Barnes G-function; Hurwitz zeta function; Gamma-related function; Multiple gamma-type function; Generalized Stieltjes constant
Résumé :
[en] In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.
Disciplines :
Mathématiques
Sciences informatiques
Auteur, co-auteur :
MARICHAL, Jean-Luc ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Zenaïdi, Naïm;  University of Liège, Department of Mathematics, Liège, Belgium
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A generalization of Bohr-Mollerup's theorem for higher order convex functions
Date de publication/diffusion :
07 juillet 2022
Maison d'édition :
Springer, Cham, Suisse
ISBN/EAN :
978-3-030-95087-3
Nombre de pages :
XVIII, 323
Collection et n° de collection :
Developments in Mathematics, Vol. 70
Focus Area :
Computational Sciences
Intitulé du projet de recherche :
FNR RESCOM: SCIENTIFIC MONOGRAPHS > Project Nr 16552440 > Jean-Luc Marichal > 2022
Organisme subsidiant :
University of Luxembourg - UL
FNR - Fonds National de la Recherche
Commentaire :
License: CC BY Series ISSN: 1389-2177 Series E-ISSN: 2197-795X
Disponible sur ORBilu :
depuis le 05 octobre 2020

Statistiques


Nombre de vues
731 (dont 177 Unilu)
Nombre de téléchargements
436 (dont 65 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu