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Preface

In this work, we provide a general and unified setting for a systematic and in-depth
investigation of a broad variety of functions, including several special functions like
the BEuler gamma function, the polygamma functions, the Barnes G-function, the
Hurwitz zeta function, and the generalized Stieltjes constants.

We know for instance that the gamma function

o0
rx) = J ttetdt
0

satisfies several fundamental properties and identities such as Bohr-Mollerup’s charac-
terization, Euler’s infinite product, Gauss’ multiplication formula, Stirling’s formula,
and Weierstrass’ infinite product. In this book, we show through a series of new and
elementary results that a large range of functions of mathematical analysis satisfy
analogues of several properties of the gamma function, including those mentioned
above.

The starting point of our theory is the remarkable characterization of the gamma
function on the open half-line R, = (0,00) by Harald Bohr and Johannes Mollerup
[23]. It simply states that the log-gamma function f(x) = InT"(x) is the unique convex
solution vanishing at x = 1 to the equation

f(x+1)—f(x) = Inx, x > 0.

This result can actually be slightly generalized as follows, where A denotes the clas-
sical forward difference operator.

All eventually convez solutions to the equation Af(x) =Inx on R, are
of the form f(x) = c+1nT(x), where c € R.

(Here and throughout, a function is said to be eventually convex if it is convex in a
neighborhood of infinity.)

This characterization was later generalized to a wide class of functions by Wolfgang
Krull [54] and then independently by Roger Webster [98]. They essentially showed
that for any eventually concave function g: R, — R having the asymptotic property
that the sequence n +— Ag(n) converges to zero, there exists exactly one (up to
an additive constant) eventually convex solution f: R, — R to the equation Af =
g. When g(x) = Inx, this latter result clearly reduces to the above Bohr-Mollerup
characterization of the gamma function.
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Krull-Webster’s result constitutes an important contribution to the resolution of
the difference equation Af = g on the real half-line R, . Indeed, it provides analogues
of Bohr-Mollerup’s characterization for many functions, including the gamma func-
tion, the digamma function, and the g-gamma functions. Nevertheless, we can see
that the asymptotic condition imposed on the function g remains rather restrictive.
For instance, it is not satisfied by the functions g(x) = xIlnx and g(x) = InT(x). In
fact, it is not even satisfied by the identity function g(x) = x.

In this monograph, we generalize Krull-Webster’s result by relaxing considerably
the asymptotic condition into requiring that the sequence n — APg(n) converges
to zero for some nonnegative integer p. Each of the functions g(x) = xInx, g(x) =
InT(x), and g(x) = x clearly satisfies this new assumption for p = 2. Moreover, in
our generalization the convexity and concavity properties used by Krull and Webster
are naturally replaced with their p-order versions. On this matter, it is noteworthy
that many of the familiar functions of real analysis are eventually convex or concave
of any order.

The solutions arising from Krull-Webster’s characterization are called logI'-type
functions. Those arising from our generalized version are called multiple log I'-type
functions. As we demonstrate through this work, this latter class of functions is very
rich and includes a wide variety of special functions.

In the diagram opposite, we describe how our result generalizes to any nonnegative
integer p the special case when p = 1 obtained by Krull and Webster, who both
generalized Bohr-Mollerup’s theorem.

We also follow and generalize Webster’s approach and provide for multiple log I'-
type functions analogues of Euler’s constant, FEuler’s infinite product, Gauss’ limat,
Gauss’ multiplication formula, Gautschi’s inequality, Legendre’s duplication for-
mula, Raabe’s formula, Stirling’s constant, Stirling’s formula, Wallis’s product
formula, Weierstrass’ infinite product, and Wendel’s inequality for the gamma
function. We also introduce and discuss analogues of Binet’s function, Burn-
side’s formula, Euler’s reflection formula, Fontana-Mascheroni’s series, Gauss’
digamma theorem, and Webster’s functional equation. Some additional properties
of multiple log I'-type functions are also provided and discussed, including asymptotic
equivalences, asymptotic expansion formulas, Taylor series expansion formulas, and
Gregory formula-based series representations.

Lastly, we apply our results thoroughly to several usual special functions, including
the gamma and digamma functions, the polygamma functions, the q-gamma function,
the Barnes G-function, the Hurwitz zeta function and its higher order derivatives,
and the generalized Stieltjes constants. We also briefly discuss some further special
functions such as the Gauss error function, the exponential integral, the regularized
incomplete gamma function, the multiple gamma functions, and the Bernoulli poly-
nomials. All these examples illustrate how powerful is our theory to produce formulas
and identities almost mechanically.

For example, applying our results to the gamma function I': R, — R, itself, we



Higher order version of Krull-Webster’s theory

Af(x) = g(x)
g is eventually p-concave and APg(n) — 0
f is eventually p-convex

Solutions: Multiple log '-type functions

T

Krull-Webster’s theory

Af(x) = g(x)
g is eventually concave and Ag(n) — 0
f is eventually convex

Solutions: log-type functions

T

Bohr-Mollerup’s characterization

Af(x) = Inx
f is eventually convex

Solutions: f(x) =c+InT(x)

vii
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easily retrieve the following Gauss limit

nin*
Mx) = lim x>0
() n=oox(x+1) -+ (x +n)’ '
and the Weierstrass infinite product
e Y S ek
Nx) = X x>0,
X ogattx

where 7y is the Euler constant. We also easily establish the double inequality

1 1
1\ 2 r 1\2
(1 + ) < (X)1 < (1 + ) ) x>0,
X V2tx* Tz e x
from which we immediately derive the Stirling formula
Nx) ~ Vomx Tze ™ as X — 0o.
To give another example, let us consider the restriction to R, of the Barnes G-
function (see Barnes [14-16]). That is, the function G: R — R, whose logarithm
f(x) = In G(x) is the unique 2-convex solution vanishing at x = 1 to the equation

= InT(x), x > 0.

f(x 4+ 1) — f(x)
Thus defined, the function In G(x) is a multiple log I'-type function, and we can there-
fore state the following analogue of Bohr-Mollerup’s characterization.
All eventually 2-convez solutions to the equation Af(x) = InT(x) on
R, are of the form f(x) = ¢+ Iln G(x), where c € R.
Using our results, we can also easily show that the Barnes G-function satisfies the
following analogue of Gauss’ limit for the gamma function
. rr2) --- rmn) ()
G = 1 Xnlz 0.
0= I D) T X

Moreover, it satisfies the following analogue of Weierstrass’ infinite product

ey DG 20 k) x b1 (k) (3)
G(x) = r'(x) gr(x+k)k ¢ R

where {; is the trigamma function defined by the equation

P1(x) = D?InT(x) for x > 0.

We also establish the double inequality
5
1) iz

1\ 12 (
z <
(” X) S T L a0
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from which we immediately derive the following analogue of Stirling’s formula
G(x) ~ A2 (2m) 5 x12 ['(x) "2 e¥—=2(¥)+12 as x — 00,

where {_, is the polygamma function defined by the equation

P_o(x) = r InT'(t) dt forx >0
0

and A is the Glaisher-Kinkelin constant defined by the equation
1
li
¢'(-1) = E—lnA.
In this work, we also derive many other properties of the Barnes G-function simply
as analogues of properties of the gamma function.

To sum up, in this monograph we develop a far-reaching generalization of the
Bohr-Mollerup theorem, along lines initiated by Krull, Webster, and some others but
going considerably further than past work. In particular, we show using elementary
techniques that many classical properties of the gamma function have counterparts
for a very wide variety of functions.

In this regard we observe that, in his outstanding exposition of the gamma func-
tion, Emil Artin [11, p. vi] wrote:

“I feel that this monograph will help to show that the gamma function
can be thought of as one of the elementary functions, and that all
of its basic properties can be established using elementary methods of
the calculus.”

In writing this book, our hope is to convince the reader that Artin’s statement applies
also to all the multiple log I'-type functions.

Lastly, since Bohr-Mollerup’s theorem dates back to 1922, this work is also an
opportunity to mark the 100th anniversary of this remarkable result and to spark the
interest and enthusiasm of a large number of researchers in this theory.

Jean-Luc Marichal
Nalm Zenaidi
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Chapter 1

Introduction

Let R, denote the open half-line (0,00) and let A denote the forward difference
operator on the space of functions from R, to R. In this book, we are interested in
the classical difference equation Af = g on R, which can be written explicitly as

fi(x +1) —f(x) = g(x), x >0,

where g: Ry — R is a given function. This equation appears naturally in the theory
of the Euler gamma function, with f(x) = InT'(x) and g(x) = Inx, but also in the
study of many other special functions such as the Barnes G-function and the Hurwitz
zeta function (see Examples 1.6 and 1.7 below).

It is easily seen that, for any function g: R, — R, the equation above has infinitely
many solutions, and each of them can be uniquely determined by prescribing its
values in the interval (0, 1]. Moreover, any two solutions always differ by a 1-periodic
function, i.e., a periodic function of period 1.

For certain functions g, however, special solutions can be determined by their
local properties or their asymptotic behaviors. On this issue, a seminal result is the
very nice characterization of the gamma function by Bohr and Mollerup [23]. We
recall this important result in the following theorem.

Theorem 1.1 (Bohr-Mollerup’s theorem). All log-convez solutions f: Ry — Ry to
the equation
f(x+1) = xf(x), x>0, (1.1)

are of the form f(x) = cT'(x), where ¢ > 0.

The additive, but equivalent, version of this result, obtained by taking the loga-
rithm of both sides of (1.1), can be stated as follows.

For g(x) = Inx, all convezr solutions f: R, — R to the difference
equation Af = g are of the form f(x) =c+InTl'(x), where c € R.

As we can see, this characterization enables one to single out the gamma function
as a kind of principal solution to its equation (N&rlund [82, Chapter 5] calls it the
“Hauptlésung”).



It is noteworthy that the proof of Bohr-Mollerup’s characterization was simplified
later by Artin [10] (see also Artin [11]) and, as observed by Webster [98], this result
has then become known also “as the Bohr-Mollerup-Artin Theorem, and was adopted
by Bourbaki [24] as the starting point for his exposition of the gamma function.”

Remark 1.2. In their original result, Bohr and Mollerup actually considered the
additional assumption that f(1) = 1, thus leading to the gamma function as the
unique solution (see Artin [11, p. 14]). However, it is easy to see that Theorem 1.1
immediately follows from this original result (just replace f(x) with f(x)/f(1)). O

A remarkable generalization of Bohr-Mollerup'’s theorem was provided by Krull
[64,55] and then independently by Webster [97,98]. Recall that a function g: Ry — R
is said to be eventually convex (resp. eventually concave) if it is convex (resp. concave)
in a neighborhood of infinity. Krull [54] essentially showed that for any eventually
concave function g: R; — R having the asymptotic property that, for each h > 0,

glx+h)—g(x) = 0 as x — 00, (1.2)

there exists exactly one (up to an additive constant) eventually convex solution
f: Ry — R to the equation Af = g (and dually, if g is eventually convex, then f
is eventually concave). He also provided an explicit expression for this solution as a
pointwise limit of functions, namely

f(x) = f(1)+ lim f[gl(x), x>0,

n—oo

where
n—1

fRlglx) = —g(x)+ > _(g(k) —g(x+k)) +xg(n). (1.3)
k=1
Much later, and independently, Webster [97,98] established the multiplicative version
of Krull’s result.

We can actually show that this result still holds if we replace the asymptotic
condition (1.2) imposed on the function g with the slightly more general condition
that the sequence n — Ag(n) converges to zero. However, although this result
constitutes a very nice generalization of Bohr-Mollerup’s theorem, we note that the
latter asymptotic condition remains a rather restrictive assumption. For instance, it
is not satisfied by the functions g(x) = xInx and g(x) = InT'(x).

In this work, we generalize Krull-Webster’s result above by relaxing the asymp-
totic condition on g into the much weaker requirement that the sequence n — APg(n)
converges to zero for some nonnegative integer p. More precisely, we show that Krull-
Webster’s result still holds if we assume this weaker condition, provided that we re-
place the convexity and concavity properties with the p-convexity and p-concavity
properties (see Definition 2.2) and the function f% [g] defined in (1.3) with an appro-
priate version of it, which we now introduce.

Throughout this book, we let N denote the set of nonnegative integers and we let
N* denote the set of strictly positive integers.



Definition 1.3. For any p € N, any n € N*, and any ¢g: R, — R, we define the
function fh[g]: R, — R by the equation

n—1 P

lglx) = —g(x)+ ) _(gk)—glx+Kk)+) () A g (1.4)

k=1 j=1

We now state our result in the following existence theorem. It actually constitutes
the p-order version of Krull-Webster’s result.

Theorem 1.4 (Existence). Let p € N and suppose that the function g: Ry — R
1s eventually p-convez or eventually p-concave and has the asymptotic property
that the sequence n — APg(n) converges to zero. Then there exists a unique (up
to an additive constant) eventually p-convex or eventually p-concave solution
f: Ry — R to the difference equation Af = g. Moreover,

f(x) = f(1)+ lim f¥[g](x), x >0, (1.5)

n—oo

and f s p-convezr (resp. p-concave) on any unbounded subinterval of Ry on
which g s p-concave (resp. p-convez).

Webster [98, Theorem 3.1] also established (in the multiplicative notation) a
uniqueness theorem, which does not require the function g to be eventually con-
vex or eventually concave. In the next theorem, we provide the p-order version of
this result.

Theorem 1.5 (Uniqueness). Let p € N and let the function g: R, — R have
the property that the sequence n +— APg(n) converges to zero. Suppose that
f: Ry — R s an eventually p-convez or eventually p-concave function satisfying
the difference equation Af = g. Then f s uniquely determined (up to an additive
constant) by g through the equation
f(x) = (1) + lim fF[gl(x), x > 0.
n—oo

We observe that Theorem 1.4 was first proved in the case when p = 0 by John [49].
As mentioned above, it was also established in the case when p = 1 by Krull [54] and
then by Webster [98]. More recently, the case when p = 2 was investigated by Rassias
and Trif [86], but the asymptotic condition they imposed on the function g is much
stronger than ours and hence it defines a very specific subclass of functions. (We
discuss Rassias and Trif’s result in Appendix B.) We also observe that attempts
to establish Theorem 1.4 for any value of p were made by Kuczma [58, Theorem 1]
(see also Kuczma [60, pp. 118-121]) and then by Ardjomande [9]. However, the
representation formulas they provide for the solutions are rather intricate. Thus, to
the best of our knowledge, both Theorems 1.4 and 1.5, as stated above in their full
generality and simplicity, were previously unknown.

For any solution f arising from Theorem 1.4 when p = 1, Webster [98] calls the
function exp of a I'-type function. In fact, exp of reduces to the gamma function (i.e.,



f(x) =InT(x)) when exp og is the identity function (i.e., g(x) = lnx), which simply
means that the gamma function restricted to R is itself a I'-type function. In this
particular case, the limit given in (1.5) reduces to the following Gauss well-known
limit for the gamma function (see Artin [11, p. 15])

nin*

M) = Jim ey X0 (1.6)

Similarly, for any fixed p € N and any solution f arising from Theorem 1.4, we call
the function exp of a I',-type function, and we naturally call the function f a log [}, -
type function. When the value of p is not specified, we call these functions multiple
I'-type function and multiple log I'-type function, respectively. This terminology
will be introduced more formally and justified in Section 5.2.

Interestingly, Webster established for I'-type functions analogues of Euler’s con-
stant, Gauss’ multiplication formula, Legendre’s duplication formula, Stirling’s
formula, and Weierstrass’ infinite product for the gamma function. In this work,
we also establish for multiple I'-type functions and multiple log I'-type functions ana-
logues of all the formulas above as well as analogues of Euler’s infinite product,
Gautschi’s inequality, Raabe’s formula, Stirling’s constant, Wallis’s product for-
mula, and Wendel’s inequality. We also introduce and discuss analogues of Binet’s
function, Burnside’s formula, Euler’s reflection formula, Fontana-Mascheroni’s
sertes, and Gauss’ digamma theorem. Thus, (to paraphrase Webster [98, p. 607])
for each multiple I'-type function, it is no longer surprising for instance that “some
analogue of Legendre’s duplication formula must hold, almost rendering a formal
proof unnecessary!’

All these results, together with the uniqueness and existence theorems above,
show that the theory we develop in this book provides a very general and unified
framework to study the properties of a large variety of functions. Thus, for each of
these functions we can retrieve known formulas and sometimes establish new ones.

At the risk of repeating a large part of our preface, we now present two represen-
tative examples to illustrate the way our results can be applied to derive formulas
methodically.

Example 1.6 (The Barnes G-function, see Section 10.5). The restriction to R, of
the Barnes G-function can be defined as the function G: R, — R, whose logarithm
f(x) = In G(x) is the unique eventually 2-convex solution that vanishes at x = 1 to
the equation

f(x+1)—f(x) = InT(x), x > 0.

Thus, our Theorems 1.4 and 1.5 apply with g(x) = InT'(x) and p = 2, which shows
that the function In G(x) is a log I;-type function and hence that the function G(x)
is a Iy-type function. In particular, formula (1.5) provides the following analogue of
Gauss’ limat for the gamma function

rre) --- rn) (3

G = Im i D T ™




Using some of our new results, we are also able to derive various unusual formulas and
properties. For instance, we have the following analogue of Euler’s infinite product

I I = S LI ()
G(x) = ol gr(x+k)k (1+1/k)

and the following analogue of Weierstrass’ infinite product

YD) 20 ) X o’ (k) (%)
Gx) = r(x) gr(x+k)k ) -

where vy is the Euler constant and 1 is the digamma function. We also have the
following analogue of Stirling’s formula

G(x) ~ A2 (2m) % x12 ['(x) "2 e¥—=2()+3 as X — 00,

where {_5 is the polygamma function defined by the equation
X
Pop(x) = J InT(t) dt for x > 0,
0

and A is Glaisher-Kinkelin’s constant defined by the equation

1
I— = — —
'(-1) B InA.
(Here the map s — (’(s) denotes the derivative of the Riemann zeta function.) We

can also easily derive the following analogue of Wendel’s double inequality
_|fa—1 a—1
<1+E) |(2)|< G(x+a)a <(1+g>|(2)|’
x G(x)T(x)ex(2) X

which holds for any x > 0 and any a > 0. As a corollary, this inequality immediately
provides the following asymptotic equivalence

G a
% ~ F(x)“x(z) as x — 00,
which reveals the asymptotic behavior of G(x + a)/G(x) for large values of x. O

Example 1.7 (The Hurwitz zeta function, see Section 10.6). Consider the Hurwitz
zeta function s — ((s,a), defined when R(a) > 0 as an analytic continuation to
C \ {1} of the series

[e¢]

D (a+k)F,  %(s)>1.

k=0

This function is known to satisfy the difference equation

C(37 a-+ 1) - C(S: a) = —a®



Thus, it is not difficult to see that, for any s € R \ {1}, the restriction of the map
x > ((s,x) to R is a log I}, (5)-type function, where

p(S) = max{O, Ll - SJ}

Theorem 1.5 then tells us that all eventually p(s)-convex or eventually p(s)-concave
solutions fs: R, — R to the difference equation

fs(x+1)—fs(x) = —x~°

are of the form
fs(x) = cs+(s,%),

where ¢, € R. Moreover, equation (1.5) provides the following analogue of Gauss’
limat for the gamma function

n—1 p(s)
s,x) = Cls)+x "+ Tim | 3 ((x+k)7°—k*) =) (Halin= |,
k=1 j=1

where s — ((s) = ((s,1) is the Riemann zeta function. Some of our results also
enable us to derive the following analogues of Stirling’s formula

1—s p(s)
C(s,x) + — Z G; N7Ix™ = 0 as x — 0o,
j=1
1 p(s) B
U(s,x) + T Z(I;S) Xs+jjfl — 0  asx— oo,
i=0

where G;, is the nth Gregory coefficient and B,, is the nth Bernoulli number. For
instance, setting s = f% in these asymptotic formulas, we obtain

C(=3x)+2x52 -2+ L (x+1)32 — 0 as x — 00,
C(=3,x)+2x52—2x3/2+ 2x12 - 0 asx — o0.
Many more formulas and properties involving the Hurwitz zeta function will be pro-
vided and discussed in Section 10.6. O

The two examples above illustrate the scope of our theory and the diversity of our
results. These examples and many others will be explored and discussed in the last
chapters of this book. However, in the first chapters we will almost always use the
basic function g(x) = Ilnx as the guiding example to illustrate our results.

Outline of the book. Let us now see how this book is organized. On the whole,
Chapters 2 to 8 are devoted to the conceptual part: we develop our theory and
establish our results. Chapters 10 to 12 focus on applications to a large number of
functions, including several classical special functions. In between, Chapter 9 presents



an overview and a summary of our results. After reading this introduction, the reader
interested by such an overview can go immediately to Chapter 9.

In Chapter 2, we present some definitions and preliminary results on Newton
interpolation theory as well as on higher order convexity properties.

In Chapter 3, we establish Theorems 1.4 and 1.5 and provide conditions for the
sequence n +— fh[gl(x) to converge uniformly on any bounded subset of R,. We
also examine the particular case when the sequence n — g(n) is summable, and we
provide historical remarks on some improvements of Krull-Webster’s theory.

In Chapter 4, we investigate the functions that satisfy the asymptotic condition
stated in Theorems 1.4 and 1.5. We also investigate those functions that are eventually
p-convex or eventually p-concave.

In Chapter 5, we introduce, investigate, and characterize the multiple log I'-type
functions.

Chapter 6 is devoted to an asymptotic analysis of multiple log I'-type functions.
More specifically, in that chapter we show how Euler’s constant, Stirling’s constant,
Stirling’s formula, and Wendel’s inequality for the gamma function can be generalized
to the multiple I'-type functions and multiple log I'-type functions and we introduce
and discuss analogues of Binet’s function and Burnside’s formula. We also show how
the so-called Gregory summation formula, with an integral form of the remainder,
can be very easily derived in this setting.

In Chapter 7, we discuss conditions for the multiple log '-type functions to be
differentiable and establish several important properties of the higher order derivatives
of these functions.

In Chapter 8, we explore further properties of the multiple log I'-type functions.
Specifically, we provide asymptotic expansions of these functions as well as analogues
of Huler’s infinite product, Fontana-Mascheroni’s series, Gauss’ multiplication for-
mula, Gautschi’s inequality, Raabe’s formula, Wallis’s product formula, and Weier-
strass’ infinite product for the gamma function. We also discuss analogues of Euler’s
reflection formula and Gauss’ digamma theorem, and we define and solve a generalized
version of a functional equation proposed by Webster.

Chapter 9 is the transition from the theory to the applications. It provides a
catalogue of our most relevant results, which can be used as a checklist to investigate
the multiple log I'-type functions. Chapter 9 is self-contained and can be read right
after this introduction.

In Chapters 10 to 12, we apply our results to a number of multiple I'-type functions
and multiple log I'-type functions, some of which are well-known special functions
related to the gamma function.

In Chapter 13, we make some concluding remarks and propose a list of interesting
open questions.

Notation and basic definitions. Throughout this book, we use the following
notation and definitions. Further definitions will be given in the subsequent chapters.

Unless indicated otherwise, the symbol I always denotes an arbitrary interval of
the real line whose interior is nonempty.



The symbol S represents either N or R. For any S € {N, R}, the notation x —g oo
means that x tends to infinity, assuming only values in S. We sometimes omit the
subscript S when no confusion may arise.

Two functions f: Ry — R and g: Ry — R such that f(x)/g(x) — 1 as x =g o
are said to be asymptotically equivalent (over S). In this case, we write

f(x) ~ g(x) as X —>g 00.

For any x € R, we set
x; = max{0,x}.

As usual, we also let |x| denote the floor of x, i.e., the greatest integer less than or
equal to x. Similarly, we let [x] denote the ceiling of x, i.e., the smallest integer
greater than or equal to x. When no confusion may arise, we let {x} denote the
fractional part of x, i.e., {x} =x — |x].

For any x € R and any k € N, we set

MNx+1)

Xk = X(X—l) (X—k+1) = m

and we let
Ek(X) € {_1)011}
denote the sign of xX.
For any k € N and any nonempty open real interval I, we let C*(I) denote the set

of k times continuously differentiable functions on I, and we set C* = C*(R,). We
also introduce the intersection sets

CX(I) = ﬂek(l) and C® = ﬂek.

k>0 k=0

We let A and D denote the usual difference and derivative operators, respectively.
We sometimes add a subscript to specify the variable on which the operator acts, e.g.,
writing A,, and Dy.

Recall that the digamma function 1 is defined on R, by the equation

P(x) = DInT(x) for x > 0.

The polygamma functions \ (v € Z) are defined on R, as follows (see, e.g., Srivas-
tava and Choi [93]). If v € N, then

by(x) = DP(x) = p™(x).

In particular, Py = 1 is the digamma function. If v € Z \ N, then we introduce the
functions

Yoi(x) = InT(x)
and

X x _ 4+)—Vv—1
Bya(x) = J Dot dt = L % InT(t) dt.



Recall also that the harmonic number function x — H, is defined on (—1, c0) by

the equation
= (1 1
H, = —— f > —1.
x k; (k x+k) orx

Clearly, this function has the property that

1

A=

x> —1.

Moreover, both functions H, and 1\(x) are strongly related: we have
Hyi 1 = Il)(X)-f-V, X>0)

where vy is Euler’s constant (also called Euler-Mascheroni constant).
We end this first chapter by introducing some new concepts that will be very
useful in this book.

Definition 1.8. For any a > 0, any p € N, and any g: R, — R, we define the
function phlgl: [0, 00) — R by the equation

|
—

P
pPlgl(x) = g(x+a)— (’]‘) Ng(a) for x > 0. (1.7)
j

I
o

Identity (1.7) clearly shows that the function p§[g] is actually defined on the open
interval (—a, co). However, in this work we will almost always consider it as a function
defined on the interval [0, 00). We also note that p}[g](0) = 0.

Definition 1.9. For any p € N and any S € {N,R}, we let R{ denote the set of
functions g: R; — R having the asymptotic property that, for each x > 0,

pblgl(x) — O as a —g 00.

We also let DY denote the set of functions g: Ry — R having the asymptotic property
that
APg(x) = 0 as X —rg 00.

We immediately observe that the inclusion Df C @EH holds for every p € N.
We will see in Sections 3.1 and 4.1 that the inclusion RE C ngH also holds for every
peN.
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Chapter 2

Preliminaries

This chapter is devoted to some basic definitions and results that are needed in this
book. We essentially focus on the Newton interpolation theory and the higher order
convexity and concavity properties.

Recall that, unless indicated otherwise, the symbol I always denotes an arbitrary
real interval whose interior is nonempty.

2.1 Newton interpolation theory

In this first section, we recall some basic facts about Newton interpolation theory
and divided differences. We also establish a result on the derivatives of interpolating
polynomials. For background see, e.g., de Boor [32, Chapter 1], Gel’fond [39, Chapter
1], Quarteroni et al. [85, Section 8.2.2], and Stoer and Bulirsch [94, Section 2.1.3].

Let n € N and let xg,x1,...,%xn be any (not necessarily distinct) points of I.
Let also f: I — R be so that D™~ 1f(x;) exists for i = 0,...,n, where m; is the
multiplicity of x; among the points xg, X1, ...,Xn.

We let

fIX0, X1y -+ -y Xnl
denote the divided difference of f at the points xg, X1, ..., Xn, and we let the map
X = Pn[ﬂ(XO)Xla et 7XTL;X)
denote the interpolating polynomial of f with nodes at xg, X1, ..., Xn, i.€., the unique

polynomial P satisfying the equations
D*P(xi) = D*f(xy), o<k<m—1, i=0,...,n.

This polynomial has degree at most n.
Recall that f[xg,x1,...,Xxn] is precisely the coefficient of x™ in the interpolating
polynomial P, [f](xg, X1, ..., Xn;X). More precisely, the Newton interpolation formula

11
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states that

n k—1
Prlfl(x0, X1,y Xn;X) = Zf[XO,X1,~~,Xk} H(X*Xil (2.1)
k=0 i=0

Moreover, the corresponding interpolation error at any x € I can take the following
form

f(x) — Pulfl(xg, X1y .- -y X3 X) = TIX0yX1y. .0y Xn, X] H(x—xi). (2.2)
i=0

Recall also that the map

(zo,2z1y+-y2n) — flzo,21,...,2n]

is symmetric, i.e., invariant under any permutation of its arguments. Moreover, the
divided differences of f can be computed via the following recurrence relation. For
any k €{0,1,...,n}, we have f[x;] = f(xy) and

Xy, ..., x) — flxo, - oo, Xk—1] i £ %o,
flxg,.. ., XK = 1 Xk — X0 (2.3)
ﬁDkf(Xo), ifX():Xl:"':Xk.
When the points xg, X1, . . ., X, are pairwise distinct, we also have the following explicit
expression
= fxk)

f coaxnl = TT (e —xi) 4
[XOaxla X ] kaon;ék(xkixj) ( )

We now establish a proposition that shows how the derivative of an interpolating
polynomial of a differentiable function f is related to the derivative of f.

Proposition 2.1. Suppose that [ is an arbitrary nonempty open real interval.

For any n € N*, any system xg < X1 < --- < X of n+ 1 points in I, and any
differentiable function f: I — R, there exist n points &g, ..., Eqn—1 tn | such that,
fori=0,...,n—1, we have x; < & < xiy1 and
DXPTl[f](XO1"'1XTL;X)’X:E”L = f/(al) (25)
Moreover, we have
DxPn [f] (Xo, e ,Xn;X) = Pnfl[fl](ao, ey E,nfl; X) (26)
and
Tlf[Xo,...,Xn] = f/[ao,...,anfl]. (27)

Proof. The function g: I — R defined by the equation
g(x) = Pulfl(xoy...,%Xn;x) —f(x) forx e1

vanishes at the n + 1 points xg,Xx1,...,X%n. The first part of the proposition then
follows from applying Rolle’s theorem in each interval (xi,xi+1). Now, identity (2.6)
immediately follows from (2.5) and the very definition of the interpolating polynomial.
Identity (2.7) then follows by equating the coefficients of x™ ! in (2.6). O
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2.2 Higher order convexity and concavity

Let us recall the definitions of p-convex and p-concave functions and present some
related results. For background see, e.g., Kuczma [58], Kuczma [61, Chapter 15],
Popoviciu [84], and Roberts and Varberg [87, pp. 237-240].

Definition 2.2 (p-convexity and p-concavity). A function f: I — R is said to be
convez of order p (resp. concave of order p) or simply p-convez (resp. p-concave)
for some integer p > —1 if for any system xp < X1 < --- < Xp41 of p + 2 points in I
it holds that

flxo, %1, .-+, Xp41] = 0 (resp. flxo,x1,...,Xps1] < 0).

Thus defined, a function f: I — R is 1-convex if it is an ordinary convex function; it
is O-convex if it is increasing (in the wide sense); it is (—1)-convex if it is nonnegative.

Let us now introduce a practical notation to denote the set of p-convex functions
and the set of p-concave functions.

Definition 2.3. Let p > —1 be an integer.

e We let KV (I) (resp. KP (I)) denote the set of functions f: I — R that are p-
convex (resp. p-concave).

o We let XV (resp. X ) denote the set of functions f: R, — R that are eventu-
ally p-convex (resp. eventually p-concave), i.e., p-convex (resp. p-concave) in a
neighborhood of infinity.

We also set
KP(I) = KE(DHUXP(I) and KP = KP UXP.

The following proposition shows that both sets K¥ (I) and KXP (I) are convex cones
whose intersection is precisely the real linear space of all polynomials of degree less
than or equal to p. A similar description of the sets X% and X? will be given in
Corollary 4.6.

Proposition 2.4. For any p € N, the sets X" (I) and X" (1) are convez cones.
These cones are opposite in the sense that f lies in K% (1) iof and only if —f lies
in XP (I). Moreover, the intersection XY (I)NKP (1) is the real linear space of all
polynomauals of degree less than or equal to p.

Proof. That the sets X% (I) and X (I) are convex cones is trivial; indeed, if f; and
fy lie in iK'i(I) for instance, then so does c1f; + c»fs for any c1,cy > 0. By definition
of X% (I) and KP” (I), these cones are clearly opposite. Now, let f lie in K (I) N KP (1)
and let xop < --- < Xxp be p+ 1 points in I. By (2.2), for any x € I we must have

f(X) 7Pp[ﬂ(X07X17"'7XD;X) = 0)

which shows that f is a polynomial of degree at most p. Conversely, using (2.2) again,
we can readily see that any such polynomial lies in K% (I) N P (I). O



14

We now present an important lemma. It is interesting in its own right and will
be very useful in the subsequent chapters. A variant of this result can be found in
Kuczma [61, Lemma 15.7.2].

Recall first that for any f: I — R, any p € N, and any x € [ such that x+p €1,
we have

APf(x) = p'flx,x+1,...,x+pl (2.8)

Lemma 2.5. Let p € N and let J,,1 denote the set of tuples of [P+ whose
components are pairwise distinct. A function f: 1 — R les in X% (1) (resp.
KP (1)) if and only if the restriction of the map

(zo,-.-,zp) — flzo,...,2p]

to Jp41 s increasing (resp. decreasing) in each place. In particular, if 1 is not
upper bounded, then for any function f lying in X% (1) (resp. X (1)), the function
APf 1s increasing (resp. decreasing) on 1.

Proof. Using the definition of p-convexity and the standard recurrence relation (2.3)
for divided differences, we can see that f lies in K% (I) if and only if, for any pairwise
distinct xg,...,%p 41 € I, we have

f[Xl,Xz - ,Xerﬂ — f[Xo,Xg e ,Xp+1]

> 0.
X1 —Xo
Equivalently, for any pairwise distinct xg,...,xp;1 € I, we have
X1 >% = flxi,x2...,xpp1] —flxo, X2 ..., xp41] = 0.

The latter condition exactly means that the map defined in the statement is increasing
in the first place. Since this map is symmetric, it must be increasing in each place.
The second part of the lemma follows from (2.8). O

We end this section with a second lemma, which provides some important con-
nections between higher order convexity and higher order differentiability. In fact,
these connections can be derived (sometimes tediously) from various results given
in the references mentioned in the beginning of this section, especially the book by
Kuczma [61, Chapter 15]. However, for the sake of self-containment we provide a
detailed proof in Appendix A.

Lemma 2.6. Let I be an nonempty open real interval and let p € N. Then the
following assertions hold.

(a) We have XP1L(I) C CP(I).

(b) Assume that 1 is not upper bounded. If f € K%.(I), then Aif € X% (1) for
every j €{0,...,p + 1}.

(c) If f € &(1) NKP (1) for somej €{0,...,p + 1}, then fU) € KL (I).
(d) If f € €Y(I) and f' € K (1), then f € K7 (I).
Proof. See Appendix A. O
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2.3 A key lemma

Let pe N, a >0, and f: R; — R. Combining Newton’s interpolation formula (2.1)
with identity (2.8), we can readily see that the unique interpolating polynomial of f
with nodes at the p points a,a+1,...,a+p — 1 takes the form

|
—

P
Ppoilflla,a+1,...,a+p—1;x) = (X;‘l) ANf(a). (2.9)
j

Il
o

If p =0, then this polynomial is naturally the zero polynomial, which is assumed to
have degree —1. Moreover, using (2.2) we can immediately see that the corresponding
interpolation error at any x > 0 is

Z (*7¢ AJf = (x—a)Pfla,a+1,...,a+p—1,x]. (2.10)

j=0

Now, the right side of (2.10) is actually the remainder of the (p —1)th degree Newton
expansion of f(x) about x = a (see, e.g., Graham et al. [41, Section 5.3]). Note
also that formula (2.10) is a pure identity in the sense that it is valid without any
restriction on the form of f(x).

Using (2.9) and (2.10) we see that, for any a > 0, any x > 0, any p € N, and
any g: R, — R, the quantity phlgl(x) defined in (1.7) is precisely the interpolation
error at a + x when considering the interpolating polynomial of g with nodes at
a,a+1,...,a+p—1. We then immediately derive the following identities:

[gl(x) = gla+x)—Ppalglla,a+1,...,a+p—Tia+x), (2.11)
gl(x) = xPgla,a+1,...,a+p—1,a+x]. (2.12)

We note that identity (2.12) also extends to the case when x € {0,1,...,p — 1}, even
if g is not differentiable. Indeed, in this case we must have ph[gl(x) = 0 by (2.11).

We now end this chapter with a key lemma that will be used repeatedly in this
book. Although this lemma is rather technical, it is at the root of various fundamental
convergence results of our theory. Recall first that, for any k € N, the symbol &y (x)
stands for the sign of xX.

Lemma 2.7. Letp € N, f € XP, and a > 0 be so that f is p-convez or p-concave
n [a,00). Then, for any x > 0, we have

0 < +ep(¥)pR™MH(x) < +

(1] (4P f(a+x) — A7f(a))

[x]—1

H X arttiai),
j=0

< (5

where + stands for 1 or —1 according to whether f lies in X% or XY . Moreover,
ifx €{0,1,...,p} (i-e., epr1(x) =0), then ph*![fl(x) =0.
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Proof. If x €{0,1,...,p}, then we have that pEf](x) = 0 by (2.11), and then the
inequalities hold trivially. Let us now assume that x ¢ {0, 1,...,p}, which means that
ep+1(x) # 0. Negating f if necessary, we may assume that it lies in K% . By (2.12)
we then have

ep o1 (X) PUFHA(X) = epia (X)X fla,a+1,...,a+p,a+d 0.
Hence, using identities (2.3) and (2.8) and Lemma 2.5, we obtain

0 < epial0) ol AN

[a,a+1,...,a+p,a+x]
B(fla+x,a+1,...;,a+pl—fla,a+1,...,a+pl)
APf(a+x) — APf(a))

APf(a+ [x]) — APF(a),

VASN/AN
o
o]
A
=
<

which proves the first two inequalities. The third one can be immediately proved

using a telescoping sum. U



Chapter 3

Uniqueness and existence
results

In this chapter, we establish Theorems 1.4 and 1.5 and show that, under the assump-
tions of these theorems, the sequence n — f} [g] converges uniformly on any bounded
subset of R;. We also discuss the particular case where the sequence n — g(n) is
summable. Lastly, we provide historical notes on Krull-Webster’s theory and some of
its improvements.

Although their proofs are short and elementary, the main results given in this
chapter are of utmost importance. They constitute the fundamental cornerstone of
the whole theory developed in this book.

3.1 Main results

We start this chapter by establishing a slightly improved version of our uniqueness
Theorem 1.5. We state this new version in Theorem 3.1 below and provide a very
short proof. Let us first note that any solution f: Ry — R to the equation Af = g
satisfies trivially the equations

n—1

fn) = f(1)+ ) g(k), neNy (3.1)
k=1
n—1

flx+n) = f(x)+ ) glx+k), mneN (3.2)
k=0

Moreover, using (1.4), (1.7), (3.1), and (3.2), we can easily derive the identity
fx) = f(1)+ gl + i 1),  meN (3.3)

We also observe that the identity obtained by setting p = 0 in (3.3) can also be
derived by subtracting (3.2) from (3.1).

17
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Theorem 3.1 (Uniqueness). Let p € N and g € DE. Suppose that f: R, — R is a
solution to the equation Af = g that lies in KXP. Then, the following assertions
hold.

1
(a) We have that f € RE".

(b) For each x > 0, the sequence n +— fhlgl(x) converges and we have

f(x) = f(1)+ lim fE[g](x).

n—o0

(c) The sequence n — fh[g] converges uniformly on any bounded subset of R,
to f—f(1).

Proof. We clearly have that f € @TS’H. Assertion (a) then follows from Lemma 2.7
and the squeeze theorem. Assertion (b) follows from assertion (a) and identity (3.3).
Now, let E be any bounded subset of R.. Using again identity (3.3) and Lemma 2.7,
for large integer n we obtain

sup [} [g](x) — f(x) + f(1)] sup |} " [f](x))

x€E x€E
[supE]—1
< sup |(51 ‘ APTH(m 45)].
sup | (%) ;O | il
This establishes assertion (c). O

Example 3.2. Using Theorem 3.1 with g(x) = Inx and p = 1, we obtain that
all solutions f: R, — R lying in X' to the equation Af(x) = Ilnx are of the form
f(x) = ¢+ InT(x), where ¢ € R. We thus simply retrieve both Bohr-Mollerup’s
Theorem 1.1 and Gauss’ limit (1.6), as expected. We also observe that the set X!
cannot be replaced with X° in this characterization. For example, the function

f(x) = InT(x) +In(1 + % sin(27x))
is also a solution lying in K° to the equation Af(x) =Ilnx. O

Remark 3.3. We note that the assumption that Inf is convex in Bohr-Mollerup’s
Theorem 1.1 can be easily replaced with the fact that Inf lies in foL (without using
the uniqueness Theorem 3.1). Indeed, if Inf is convex on [n, co) for some n € N, then
using (3.2) we have that

n—1
Inf(x) = Imf(x+n)— Y In(x+k), x>0,
k=0

and hence In f must be convex on R, (as a finite sum of convex functions on R, ).

We can also replace X} with X'; indeed, assuming that Inf lies in X!, we would

obtain that Alnf(x) = Inx lies in X° by Lemma 2.6(b), a contradiction. O
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Remark 3.4 (A proof of Bohr-Mollerup’s theorem). We have seen in Example 3.2 how
both Bohr-Mollerup’s theorem and Gauss’ limit can be retrieved using our results.
Let us now examine our proof in a self-contained way, using the needed arguments
only. Let f: R, — R be an eventually convex solution to the equation Af(x) = Inx.
The nature of this equation shows that it is actually enough to assume that x > 1 to
find the form of f(x). For any n € N* and any x > 1, we then have

n—1 n—1
fn) = f(1)+ ) Ik and  f(x+mn) = f(x)+ Y In(x+k)
k=1 k=0

and hence also the identity

n—1 n—1
f(x) = (1) + <Z Ink — Z In(x + k) +xlnn> + pn(x),

k=1 k=0
where
pn(x) = f(x+n)—~f(n) —xlnn.

To conclude the proof, we only need to show that, for each x > 1, the sequence
n — pn(x) converges to zero. Let n € N* be so that f is convex on [n, 0co). Using the
convexity of f we then obtain the following two inequalities

fn+1) < (1-4Hfm)+Lf(x+n),
fn+x) < Sfn+1)+1-fx+n+1).

Using these inequalities and the identity f(n + 1) — f(n) = Inn, we obtain

0 < pnlx) = flx+n)—fn+1)—(x—1)lan
< (x=1(fx+n+1)—f(x+n)—Inn) = (x—1)In(1+ ).
The proof is now complete since the latter expression converges to zero as n — oo.
This shows to which extent the proofs of Bohr-Mollerup’s theorem and Gauss’ limit

can be short and elementary. Note that a variant of this proof can be derived from
the proof of Webster’s uniqueness theorem [98, Theorem 3.1]. O

Now that we have established the uniqueness Theorem 3.1, let us prepare the
ground for the existence theorem. Using the definition of p§[g](x) given in (1.7), we
can easily derive the following two identities

palgllp) = APgla); (3.4)
pRlgl(x) — PR glx) = (3)Phldl(p).
These identities clearly show that the inclusions RE € D and RE < RE* hold for

any p € N. We will see in Proposition 4.2 that these inclusions are actually strict.
Now, the following straightforward identities will also be useful as we continue

2 1lgl(x) —fRlgl(x) = —pR™lgl(x); (3.6)
Plgl(x+1) —fP[gl(x) = g(x)—pLlgl(x). (3.7)
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For any integers 1 < m < n, from (3.6) we obtain

fRlgl(x) = fh.lg Z ol gl (3.8)

which shows that, for any x > 0, the convergence of the sequence n — fh[g](x) is
equivalent to the summability of the sequence n — pp+1[g} (x).

We now establish a slightly improved version of our existence Theorem 1.4. We
first present a technical lemma, which follows straightforwardly from Lemma 2.7.

Lemma 3.5. Let p € N, g € XP, and m € N* be so that g is p-convez or
p-concave on [m,o0). Then, for any x > 0 and any integer n > m, we have

[x]—1

?*g () ’ Z AP g(n +j) — APg(m +j)|.

<

Proof. For any fixed x > 0, the sequence k — ppH[g} (x) for k > m does not change
in sign by Lemma 2.7 and hence we have

[x]—1|n—1
p+1 Z ’perl ‘ x 1 ‘ Z Ap+1 k+]) ,
j=0 [k=m
where the inner sum clearly telescopes to APg(n+j) — APg(m+j). O

Theorem 3.6 (Existence). Let p € N and g € D NKP. The following assertions
hold.

(a) We have that g € R .

(b) The sequence n +— fhlgl(x) converges for every x > 0, and the function
f: Ry — R defined by

fx) = lim fR[gl(x), x>0,

n—oo

1s a solution to the equation Af = g that is p-concave (resp. p-convez)
on any unbounded subinterval 1 of R, on which g is p-convez (resp. p-
concave). Moreover, we have f(1) =0 and

[fRIgI00) — f(x)] < [x]

(Xgl)‘mpg(n)l, x>0, nelnN-.
If p > 1, we also have the following tighter inequality

IfRIgl(x) — f(x)| <

(5h)] 147 g +x) — AP Lg(n)|, x>0, nelNN",

(c) The sequence n — fh[g] converges uniformly on any bounded subset of R,
to f.
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Proof. We have that g € Df C DEH. By Lemma 2.7, it follows immediately that g
lies in RE ", and hence also in RE by (3.4) and (3.5). This establishes assertion (a).
Now, suppose for instance that g lies in K% . Let I be any unbounded subinterval
of R, on which g is p-convex and let m € I N N*. For any x > 0, the sequence
k+— pEH[g](x) for k > m does not change in sign by Lemma 2.7. Thus, since g lies

in Df, for any x > 0 the series
> el gl
k=m

converges by Lemma 3.5. By (3.8) it follows that the sequence n — fh[g](x) converges.
Denoting the limiting function by f, we necessarily have f(1) = 0. Moreover, by (3.7)
and assertion (a) we must have Af = g.

Since g is p-convex on I, for every n € N* the function fh[g] is clearly p-concave
on I. (Note that the second sum in (1.4) is a polynomial of degree less than or equal
to p in x, hence by Proposition 2.4 it is both p-convex and p-concave.) Since f is a
pointwise limit of functions p-concave on I, it too is p-concave on I.

The claimed inequalities then follow from identity (3.3), Lemma 2.7, and the
observation that the restriction of the sequence n — APg(n) to I N N* increases to
zero by Lemma 2.5. Indeed, for any x > 0 and any n € I N N*, we then have

IfRlgl(x) — fx)| = [pR ™A <

[x]—1
(5h] X argl+ml < I

j=0

(5, |14 (n +x) — AP F(n)

<

(5h)] APl

This proves assertion (b). Assertion (c) immediately follows from the first inequality
of assertion (b). O

Remark 3.7. We have shown in Theorems 3.1 and 3.6 that the sequence n +— fﬁ[g]
converges uniformly on any bounded subset of R,. In fact, we have proved the
slightly more general property that the sequence n — pPTLf] converges uniformly on
any bounded subset of [0, c0) to 0. O

Theorems 3.1 and 3.6 show that the assumption that g € Df N XP constitutes a
sufficient condition to ensure both the uniqueness (up to an additive constant) and
existence of solutions to the equation Af = g that lie in KP. Nevertheless, we can
show that this condition is actually not quite necessary. We discuss and elaborate on
this natural question in Appendix C.

We now present an important property of the sequence n +— fh[g]. Considering
the straightforward identity

R glx) — fRlglx) = (,}4) APg(n),
we immediately see that if the sequence

n — f2[gl(x) — f2[gl(x)
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approaches zero for some x € Ry \{0,1,...,p}, then g must lie in Df. More im-
portantly, the identity above also shows that if g lies in DX and if the sequence
n — fhlgl(x) converges, then so does the sequence n + fﬁ“[g](x) and both se-
quences converge to the same limit. Since the inclusion Df C 'D§+1 holds for any
p € N, we immediately obtain the following important proposition.

Proposition 3.8. Let p € N. If g € D} and if the sequence n — fR[g](x) con-
verges, then for any integer q > p the sequence

n — [fFlgl(x) — filgl(x)|

converges to zero. Moreover, the convergence is uniform on any bounded subset
Of R+.

Let us end this section with the following observation about our uniqueness and
existence results. In Theorem 3.1, we have proved the uniqueness of the solution f
that lies in XP by first proving that this solution necessarily lies in fR]SjH. Although
this latter asymptotic condition may seem a bit less natural than the assumption
that f lies in XP, we could as well consider it as a sufficient condition to guarantee
uniqueness. A similar observation can be made for the existence Theorem 3.6. We
can therefore establish the following two alternative results.

Proposition 3.9 (Uniqueness). Let p € N and let g: Ry — R. Suppose that
f: Ry — R 1s a solution to the equation Af = g that lies in R§+1. Then assertion
(b) of Theorem 3.1 holds, and hence f is unique (up to an additive constant).

Proof. This follows immediately from identity (3.3). O

Proposition 3.10 (Existence). Let p € N and suppose that the function g: R, —
R lies in DX and has the property that, for each x > 0, the sequence n —
pﬁ“[g](x) is summable. Then g lies in RY and there exists a unigque (up to an

additive constant) solution f: R — R to the equation Af = g that lies in ngH.

Proof. Since the sequence n — pf " *[gl(x) is summable, by (3.8) the sequence n —
fh[gl(x) converges. Denoting the limiting function by f, we necessarily have f(1) = 0.
By (3.6), the function g necessarily lies in R\ ", and hence also in R, by (3.4) and
(3.5). Thus, we must have Af = g by (3.7) and f lies in RL " by (3.3). O

Example 3.11. Let us apply Proposition 3.9 to g(x) = Inx and p = 1. We then
obtain the following alternative characterization of the gamma function (in the mul-
tiplicative notation).

If f: Ry — R, s a solution to the equation f(x + 1) = xf(x) having
the asymptotic property that, for each x > 0,

f(x +n) ~ n*f(n) as n —y 0o,
then f(x) = cT'(x) for some c > 0.

It is easy to see that this characterization also holds on the whole complex domain of
the gamma function, namely C \ (—N). O
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3.2 The case when the sequence g(n) is summable

Let CD§1 be the set of functions g: R, — R having the asymptotic property that
the series > ;- ; g(k) converges. We immediately observe that Dgl C DY. In this
context, our uniqueness and existence results can be complemented by the following
two theorems.

Theorem 3.12 (Uniqueness). Let g € Dgl and suppose that f: R, — R s a
solution to the equation Af = g that lies in K°. Then, the following assertions
hold.

(a) f(x) has a finite limit as x — oo, denote it by f(o0).

(b) For each x > 0, the series ) ,._og(x+k) converges and we have

[e¢]

f(x) = floo) = ) glx+Kk).

k=0
(c) The series x — ) 5 g(x+k) converges uniformly on R, to f(co) —f.

Proof. The sequence n + f(n) converges by (3.1). Assuming for instance that f lies
in X9, for any x > 0 we obtain

f(|x] +n) < fix+n) < f([x]+n) for large integer n.

Letting n — oo in these inequalities and using the squeeze theorem, we get assertion
(a). Assertion (b) follows from assertion (a) and identity (3.2). Now, for large integer
n, by assertion (b) and identity (3.2) we have

oo
sup Z glx+k)| = sup [f(x+n)—Tfloo)] < [f(n)—~f(o0)l.
x€R4 k=n xER
This proves assertion (c). O

Theorem 3.13 (Existence). Let g € D' NK°. The following assertions hold.
(a) We have that g € RY,.

(b) The series ) 1. o9g(x + k) converges for every x > 0, and the function
f: Ry — R defined by

fx) = =) glx+k), x >0, (3.9)
k=0

1s a solution to the equation Af = g that ts decreasing (resp. increasing)
on any unbounded subinterval 1 of R, on which g is increasing (resp.
decreasing). Moreover, we have f(x) — 0 as x — oo and, for every n €
INN*,

o0

Z g(x +k)

k=n

= |f(x+n)| < [f(n)], x > 0.
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(c) The series x — Y . ,g(x+ k) converges uniformly on R, to —f.

Proof. By Theorem 3.6, assertion (a) clearly holds (since g also lies in D%) and,
for each x > 0, the series (3.9) converges and is a solution to the equation Af = g
that satisfies the claimed monotonicity properties. Theorem 3.12 then shows that the
function f vanishes at infinity. The rest of assertion (b) follows from (3.2). Assertion
(c) is then immediate. O

Theorems 3.12 and 3.13 motivate the following definition.
Definition 3.14. For any S € {N, R}, we let ®§1 denote the set of functions g: R, —
R having the asymptotic property that, for each x € S, the series

[e¢]

Zg(x+k)

k=0
converges and tends to zero as x —g 0.

Clearly, this definition is consistent with our prior definition of D ! and we can
immediately see that the inclusion Dﬂgl C Dgl holds. Moreover, by Theorem 3.13
we have that

D' NXK® = Dyt nKO. (3.10)

Example 3.15 (The trigamma function). The trigamma function 1; is defined on
R, as the derivative \/ of the digamma function. Hence, it has the property that

M1 (x) = DAP(x) = —1/x2 for all x > 0.

Since the function  lies in D} N K™, one can show (see Proposition 4.12 in the next
chapter) that {; lies in DY N K°. Now, the function g(x) = —1/x? clearly lies in
Dy MK and hence also in DY N XY It also lies in Di' N KXY by (3.10). Thus, by
Theorems 3.6, 3.12, and 3.13, we see that the trigamma function 1; is the unique
decreasing solution f to the equation Af = g that vanishes at infinity. Moreover, we
have that

1 Us

Pi(x) = Zﬁ and Pi(l) = Zk2 = 6
k=0 k=1

Furthermore, the sequence of functions

n—1 1
n — ém = P1(x) —P1(x+mn)

converges uniformly on R, to the function 1;(x), and Theorem 3.13 provides the
following inequalities

= 1
0 < Pi(x+n) = E xR < Pi(n), x>0, neN".
k=n
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Finally, Theorem 3.6 provides the following additional inequalities

0 < i) —ilxim) < D1 oo men

We will further investigate the trigamma function 1; as a special polygamma function
in Section 10.3. O

3.3 Historical notes

As mentioned in Chapter 1, the uniqueness and existence result in the case when
p = 1 was established in the pioneering work of Krull [54,55] and then independently
by Webster [97,98] as a generalization of Bohr-Mollerup’s theorem. We observe that
it was also partially rediscovered by Dinghas [33]. In addition, we note that Krull’s
result was presented and somewhat revisited by Kuczma [56] (see also Kuczma [59]
and Kuczma [60, pp. 114-118]) as well as by Anastassiadis [7, pp. 69-73]. To our
knowledge, the only attempts to establish uniqueness and existence results for any
value of p were made by Kuczma [60, pp. 118-121] and Ardjomande [9]. Independently
of these latter results, an investigation of the special case when p = 2, illustrated by
the Barnes G-function, was made by Rassias and Trif [86] (see our Appendix B).

We also observe that Gronau and Matkowski [44,45] improved the multiplicative
version of Krull's result by replacing the log-convexity property with the much weaker
condition of geometrical convexity (see also Guan [46] for a recent application of
this result), thus providing another characterization of the gamma function, which
was later improved by Alzer and Matkowski [4] and Matkowski [68,69]. (For further
characterizations of the gamma function and generalizations, see also Anastassiadis [7]
and Muldoon [79].)

Many other variants and improvements of Krull’s result can actually be found
in the literature. For instance, Anastassiadis [6] (see also Anastassiadis [7, p. 71])
generalized it by modifying the asymptotic condition. Rohde [88] also generalized
it by modifying the convexity property. Gronau [42] proposed a variant of Krull’s
result and applied it to characterize the Euler beta and gamma functions and study
certain spirals (see also Gronau [43]). Merkle and Ribeiro Merkle [71] proposed to
combine Krull’s approach with differentiation techniques to characterize the Barnes
G-function. Himmel and Matkowski [48] also proposed improvements of Krull’s result
to characterize the beta and gamma functions.
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Chapter 4

Interpretations of the
asymptotic conditions

In this chapter, we study some important properties of the sets RY and DE and
provide interpretations of the asymptotic condition that defines the set RE.

We also investigate the sets RE N KP and DE N KP and show that they actually
coincide and are independent of S (and hence we can remove this subscript). We
also provide an interpretation of this common set DP N KP and present some of its
properties that will be very useful in the next chapters. In particular, we show that
the intersection set CP N DP N KP is precisely the set of functions g € CP for which
g'?) eventually increases or decreases to zero (see Theorem 4.14).

4.1 Some properties of the sets RE and D

Although the definition of the set RE seems rather technical (see Definition 1.9),
the following proposition shows that this set can be nicely characterized in terms of
interpolating polynomials. We omit the proof for it follows immediately from (2.11)
and (2.12).

Proposition 4.1. Let p € N. A function g: R, — R lies in RE if and only if for
each x > 0 such that x2 # 0, we have that

gla,a+1,...,a+p—1,a+x] — 0 as a —g oo.
When S = R (resp. S = N), this latter condition means that g asymptotically
cotncides with its interpolating polynomial whose nodes are any p points equally

spaced by 1 (resp. any p consecutive integers).

Interestingly, from (3.2) and (3.3) we can also immediately derive the following

27
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alternative characterization of the set RY. For any function f: R, — R, we have

oo
feER & flx) = —) Af(x+k), x>0;
k=0
feRE™ & f(x) = f(1)+ lim RlAf(KX),  x>0.
o0

(Note that we have already used these equivalences in the proofs of the uniqueness
Theorems 3.1 and 3.12 and Proposition 3.9.)

We now present a proposition that reveals some interesting inclusions among the
sets RE and DY. In particular, it shows that just as the sets DI, DL D3I, ... are
increasingly nested, so are the sets R3, R, RE,. .., and hence each of these families
defines a filtration.

Proposition 4.2. For any p € N and any S € {N,R}, the sets RY and DY are real
linear spaces that satisfy the identity

RE = RETPNDE (4.1)
and the strict inclusions
RE ¢ RET' and  DE ¢ DR

When p > 1 we also have
RE & DE.

Finally, when p =0 we have
D = Rp & Ry & DR

Proof. 1t is clear that the sets RE and DE are closed under linear combinations;
hence they are real linear spaces. Identity (4.1) then follows immediately from (3.4)
and (3.5). This identity also shows that RE C iREH. As already observed, we also
have Df C Dgﬂ trivially. Now, identity (2.11) shows that the polynomial function
x — xP lies in iR‘SDH \ RE and we can easily see that it lies also in Dgﬂ \ DE.
The inclusion RE C DE follows from (4.1) and we can easily see that the 1-periodic
function x — sin(27x) lies in DE \ RE for any p € N* as well as in DY \ RY. Finally,
let us now show that R} ¢ RY. Using bump functions for instance, we can easily
construct a smooth function f: R, — R such that for any n € N*, we have f = 0
on the interval [n —1,n — %] and f(n — i) = 1. Such a function clearly lies in RY.
However, it does not vanish at infinity, i.e., it does not lie in RS. O

We now present an important result that will be used repeatedly as we continue.
It actually follows from the second of the following straightforward identities

ph 1 f1(x) —pRIfl(x) = pRIAf](x), (4.2)
PP TLf](x + 1) — pP T2 fl(x) = pRIAf](x).
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Proposition 4.3. Letj,p € N be such that j < p. The following assertions hold.
(a) If f € RY, then AIf € RE .
(b) f e DY if and only if Nf e D).

Proof. If f lies in RE ™", then Af lies in RE by (4.3). On the other hand, it is clear
that f lies in D" if and only if Af lies in DE. O

It is easy to see that a function f: R, — R whose difference Af lies in Rf for some
p € N need not lie in iREH. For instance, the function f: R, — R defined by the
equation f(x) = sin(27tx) for x > 0 does not lie in R but its difference Af =0 lies in
R3. However, we will see in Corollary 4.10 that, if f € XP~!, then the implication in
assertion (a) of Proposition 4.3 becomes an equivalence.

Remark 4.4. In view of Proposition 4.3(b), it is natural to wonder whether there
exists a set D of functions from R to R having the property that f € D if and only
if Af € D. However, such a set does not exist. Indeed, identities (3.1) and (3.2) show
that if f lies in DY, then necessarily Af lies in @gl. Conversely, for any g € @gl,
there are infinitely many functions f: R, — R that satisfy Af = g but that do not
lie in DY. %

It is clear that, for any p € N, if both functions h and g — h lie in the space Rf,
then so does the function g. For instance, if g: R, — R has the asymptotic property
that

g(x)—P(x) — 0 as X —»g 00

for some polynomial P of degree less than or equal to p — 1, then g must lie in RE.
Indeed, P clearly lies in R and we also have that g — P lies in R$ (which is included
in RE by Proposition 4.2). Thus, the space R contains not only every polynomial of
degree less than or equal to p —1 but also every function that behaves asymptotically
like a polynomial of degree less than or equal to p — 1. To give another illustration
of the property above, we observe for instance that both functions Inx and H, —Inx
(the latter tends to Euler’s constant y as x —g 00) lie in R} and hence so does the
function Hy, which means that, for each a > 0,

Hyia—Hx — 0 as x — 00

(which, a priori, is a not completely trivial result).
These examples illustrate the fact that the spaces

o __ P o __ P
R = |JRE  and ¥=J g
p=0 p=0

are very rich and contain a huge variety of functions, including not only all the func-
tions that have polynomial behaviors at infinity as discussed above, and in particular
all the rational functions, but also many other functions. We observe, however, that
they do not contain any strictly increasing exponential function. For instance, if
g(x) = 2%, then APg(x) = 2* for any p € N, and this function does not vanish at
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infinity. Actually, such exponential functions grow asymptotically much faster than
polynomial functions and may remain eventually p-convex even after adding non-
constant 1-periodic functions. For instance, both functions 2* and 2* + sin(27x) are
eventually p-convex for any p € N.

Remark 4.5. Using (1.7) and (4.1), we also obtain R = RPN DE for any p e N. ¢

4.2 The intersection sets RE N KP and DE N KP

Let us now consider the set KP and its subsets R N KP and DE NKP. As these sets
will be used repeatedly throughout this book, it is important to study their basic
properties. In this section, we present a number of results about these sets that will
be very useful in the subsequent chapters.

Let us first observe that the set XP is not a linear space. For instance, using
Lemma 2.6 we can see that both functions

f(x) = xP™ +sinx and g(x) = xP*?

lie in XP but f — g does not. We also have that Af does not lie in KP (because
DPAf = ADPf does not lie in X°), which shows that KP is not closed under the
operator A.

The following corollary shows that KP is actually the union of two convex cones.
This result is an immediate consequence of Proposition 2.4.

Corollary 4.6. For any p € N, the sets XY and X¥ are convez cones. These
cones are opposite in the sense that f lies in XY if and only if —f lies in KP.
Moreover, the intersection X% NKP is the real linear space of all the real functions
on R, that are eventually polynomaials of degree less than or equal to p.

It is now clear that DE N KP is also the union of two opposite convex cones that
is not a linear space. For instance, both functions

sinx
X2

f(x) = 2lnx+ and g(x) = 2Inx

lie in D NK* (use, e.g., Theorem 4.14(b) below) but f — g does not.

Now, the following proposition shows that, just as the sets C°, C!,@?,... are de-
creasingly nested, so are the sets K1, K% K2, .... Thus, this latter family defines a
descending filtration and we can therefore introduce the intersection set

K2 = [P
p=0

Proposition 4.7. For any integer p > —1, we have XP™ ¢ KP,

Proof. Let f lie in KP*! for some integer p > —1. Suppose for instance that f lies
in iKKH and let I be an unbounded subinterval of R, on which f is (p + 1)-convex.



31

Let J, 12 denote the set of tuples of IP+2 whose components are pairwise distinct. By
Lemma 2.5, it follows that the restriction of the map

(ZOv e )Zerl) = f[ZO; s azp+1]

to Jpi2 is increasing in each place. If f does not lie in KP, then there are p + 2
points xg < --- < Xp41 in I such that f[xq,...,xp41] > 0. But then, f is p-convex on
the interval (xp1,00), and hence it lies in X%, which establishes the inclusion. To
see that the inclusion is strict, using Lemma 2.6 we just observe that the function
f: R, — R defined by the equation

f(x) = xP*! +sinx for x >0
lies in KP \ KP+1, O

Interestingly, Proposition 4.7 shows that the assumption that g lies in XP, which
occurs in many statements (e.g., in Theorem 3.6), can be given equivalently by the
condition that g lies in Ug>,X9.

We now present two useful propositions. The first one is very important: it shows
that the sets RE N KP and DE N KP coincide and are actually independent of S.

Proposition 4.8. For any p € N, we have
RENKP = DENKP = RENKP = DR NXKP.

Proof. We already know that RE C DE (cf. Proposition 4.2) and D} C Df. Moreover,
we have that DE NKP C RE by Theorem 3.6. It remains to show that DFNKP C DE.
Let g lie in DF NKP. Suppose for instance that g lies in K% and let a > 0 be so that
g is p-convex on [a,c0). By Lemma 2.5, APg is increasing on [a, 00). Thus, for any
X > a+ 1, we have

APg(|x]) < APg(x) < APg([x]).

Letting x — oo and using the squeeze theorem, we obtain that g lies in DE. O

Proposition 4.9. If f € XP for some p € N, then the following assertions are
equivalent:

(i) feRE™, () feDET, (i) AfeRE, (iv) AfeDE.

Proof. By Proposition 4.2, we clearly have that (i) implies (ii) and that (iii) implies
(iv). By Proposition 4.3, we also have that (i) implies (iii) and that (ii) implies (iv).
Finally, by Theorem 3.1, we have that (iv) implies (i). O

Combining Proposition 4.3 with Propositions 4.7 and 4.9, we immediately obtain
the following corollary, which naturally complements Proposition 4.3.

Corollary 4.10. Letj,p € N be such thatj <p. Iff € KP~1, then we have f € RE
if and only if NVf € RE .
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Due to Proposition 4.8, we will henceforth write DP NKP instead of D NKP. In
view of (3.10), we will also write D~ N K instead of Dg* N K°.

Since the set DP N KP is clearly a central object of our theory (cf. our existence
Theorem 3.6), it is important to investigate its properties. In this respect, we have
the following two propositions.

Proposition 4.11. Letj,p € N be such thatj < p. The following assertions hold.

(a) If g € X%, then Aig € fofj. More p'recisely, for any unbounded open
interval I of R, if g is p-convez on I, then ANg s (p —j)-convez on 1.

(b) If g € DP NKY, then Aige DPI QKL T,
Proof. This result immediately follows from Lemma 2.6(b) and Proposition 4.3. [

Proposition 4.12. Letj,p € N be such that j < p and let g € ©. The following
assertions hold.

(a) g € X% if and only if gl e fKR*j. More precisely, for any unbounded open
interval 1 of R, we have that g is p-convezr on 1 if and only if gU) is
(p —j)-convez on 1.

(b) g € DP NKY if and only if gi) € DPI N KL,

Proof. Assertion (a) follows from assertions (c) and (d) of Lemma 2.6. To see that
assertion (b) holds, it is enough to show that, for any p > 1, we have g € DP N K" if
and only if g’ € DP~1 N KV 1.
Suppose first that g lies in DP N KX?. Then g’ lies in K7 " by assertion (a). Let
x > 1 be so that g is p-convex on [x — 1, c0). Then AP~!g’ is increasing on [x — 1, co)
by assertion (a) and Proposition 4.11(a). By the mean value theorem, there exist
1, &2 €(0,1) such that

APQ(X—].) = Ap_lgl(x_l_i_ai) Ap—l I(X)

< g
< APlg/(x+E2) = APg(x).

Letting x — 0o, we see that g’ lies in 'D]‘é_l by the squeeze theorem.

Conversely, suppose that g’ lies in DP~1 N X7 . Then g lies in X7 by assertion
(a). Let x > 0 be so that g’ is (p — 1)-convex on [x,c0) and let t € (x,x + 1). Then
AP~ lg’ is increasing on [x,00) by Proposition 4.11(a), and hence we have

APTlg(x) < APTHG(Y) < AP (x +1).
Integrating on t € (x,x + 1), we obtain
AP g’ (x) < APg(x) < AP lg/(x+1).

Letting x — oo, we see that g lies in Df. O
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Remark 4.13. If a function f: R, — R is such that Af lies in XP for some p € N,
then f need not lie in KP*!, even if Af lies in DP N KP. For instance, the function
f: R, — R defined by the equation

f _ ! 1 L f 0
(x) = 2)(( +3s1nx> or x >
lies in K% \ K!. Indeed, 2%f’(x) is 2m-periodic and negative while 2Xf"(x) is 27m-
periodic and change in sign from x = % to x = 7. However, the function Af lies
in D% N J{i for 2XAf’(x) is 27-periodic and positive. This example shows that the
implications in Proposition 4.11 cannot be equivalences. O

If a function g: Ry — R lies in DP NKP for some p € N, then by Proposition 4.11
the function APg lies in D° N KP, i.e., APg eventually increases or decreases to zero.
However, a function g: R; — R that satisfies this latter property need not lie in
DP N KP, unless g lies in XP or p = 0. The example introduced in Remark 4.13
illustrates this phenomenon when p = 1. On the other hand, when g lies in CP, by
Proposition 4.12 we have that g lies in DP N XP if and only if g(P) lies in D° N KO.

We gather these important observations in the following theorem.

Theorem 4.14. Let p € N. The following assertions hold.

(a) Let g € X% (resp. XP ). Then g lies in DP N K% (resp. DP N K" ) of and
only if APg eventually increases (resp. decreases) to zero.

(b) Let g € CP. Then g lies in DP N K (resp. DP NKP ) if and only if g'P)
eventually increases (resp. decreases) to zero.

Proof. Assertion (a) immediately follows from Propositions 4.3 and 4.11. Assertion
(b) immediately follows from Proposition 4.12. O

Remark 4.15. 1t is not difficult to see that the function g(x) = %sin x? vanishes at
infinity while its derivative does not. Theorem 4.14(b) shows that if g lies in €9INDP N
K9 for some p,q € N such that p < q, then all the functions g(P),gP+1) . . g(d)
vanish at infinity. O

Propositions 4.11 and 4.12 do not provide any information on the functions Ag
and g’ when g lies in D°NK° and C'NDONXKPC, respectively. The following proposition
fills this gap under the additional assumptions that Ag and g’ lie in K°, respectively.

Proposition 4.16. The following assertions hold.
(a) If g lies in D°NKC and is such that Ag lies in KO, then Ag lies in D~1NKY.

(b) If g lies in C* N D°NK° and is such that g’ lies in K° (or equivalently, g
lies in K'), then g’ lies in C°ND 1 NKY.

Proof. Let us first prove assertion (a). Since g is eventually decreasing, Ag must
be eventually negative. But since Ag also lies in D% N K°, it must be eventually
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increasing to zero. On the other hand, since g lies in D°, Ag must lie in Dy*. This
proves assertion (a).

Let us now prove assertion (b). Since g is eventually decreasing, g’ must be
eventually negative. Since g’ lies in K° (and hence g lies in X! by Lemma 2.6), we
have that g lies in D' NK?* (since D C D). Proposition 4.12 then tells us that g’
lies in D° N KP, and hence it must be eventually increasing to zero.

It remains to show that g’ lies in Dy'. Let x > 1 be so that g is decreasing and
g’ is increasing on I, = [x — 1, 00). By the mean value theorem, for any integer k > x
there exist &, € (0,1) such that

Aglk—1) = ¢g'(k—1+&) < g'(k).

For any integers m,n such that x < m < n, we then have

—1

n—1
gn—1)—gm—1) = Y Agk—1) < ) ¢'(k) <O
k=m

=m

3

~

Letting n —y oo, we can see that g’ lies in D’ O

Remark 4.17. The assumption that Ag lies in K° cannot be ignored in Proposi-
tion 4.16(a). Indeed, take for instance the function g = Af, where f is the function
defined in Remark 4.13. We have seen that this function lies in D° N XK°. However,
it is not difficult to see that Ag does not lie in X°. Similarly, the assumption that
g’ lies in K° cannot be ignored in Proposition 4.16(b). Indeed, one can show that
the same function g has the property that g’ does not lie in X°. To give another
example, one can show that the function

g(x) = X—lz(x—ksinx)

lies in DO N K° whereas its derivative g’ does not lie in X°. O
We also have the following two corollaries, in which the symbols R and D can be

used interchangeably.

Corollary 4.18. Let g lie in X (resp. X? ) for some p € N. Then g lies in D

if and only if there exists a solution f: Ry — R to the equation Af = g that lies
in DEFTNKP (resp. DEFI N KR ).

Proof. The D-version immediately follows from Theorem 3.6 and Proposition 4.3(b).
The R-version then follows from Proposition 4.9 and Proposition 4.3(a). O

Corollary 4.19. For any p € N, we have that
PPNKY < XM7Y and DPNKP < KhL

More precisely, if g lies in DP N KP and s p-convez (resp. p-concave) on an
unbounded interval of R, then on this interval it is also (p — 1)-concave (resp.
(p — 1)-convez).
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Proof. Let g lie in DP N K% . Then the function f: R, — R defined in the existence
Theorem 3.6 is p-concave on any unbounded subinterval of R on which g is p-convex.
By Lemma 2.6(b), the function g = Af is also (p — 1)-concave on this interval. O

We end this chapter by providing a characterization of the set RP NKP = DP NKP
in terms of interpolating polynomials. We also give a corollary that will be very useful
in the subsequent chapters.

Proposition 4.20. Let g lie in XP for some p € N. Then we have that g lies in
DE if and only if for any pairwise distinct xq,...,xp > 0, we have that

gla+xg,...,a+xp] =0 as a —g 00.

This latter condition means that g asymptotically coincides with its interpolating
polynomeal with any p nodes.

Proof. (Necessity) Suppose for instance that g lies in DP N X% . By Corollary 4.19,
it also lies in KP*. Let xo, ... ,Xp > 0 be any pairwise distinct points and let a > 0
be so that g is p-convex and (p — 1)-concave on [a,c0). Then the map

x = glx+xg,...,%X+xp]

is nonpositive on [a, co0) and, by Lemma 2.5, it is also increasing on [a, c0). By (2.8),
we then have

1
aApg(a) = gla,a+1,...,a+p] < gla+p+xo,...,a+p+xp] < 0,

where the left side increases to zero as a —g oo.
(Sufficiency) This immediately follows from Propositions 4.1 and 4.8. O

Corollary 4.21. Let g lie in XV (resp. XV ) for somep € N, let a >0 and b >0,
and let h: R, — R be defined by the equation h(x) = g(ax+b) for x > 0. Then

(a) h lies in X (resp. XP);
(b) if g lies in DP NKP, then h lies in DP N K (resp. DP NKP ).

Proof. The result is trivial if p = 0. So let us assume that p > 1 and for instance
that g is p-convex on [s, c0) for some s > 0. Using (2.4), we can easily show that for
any pairwise distinct points xp,...,%p > 0 we have

hlxg,...,xp] = aPglaxo +b,...,ax, +b].

This immediately shows that h is p-convex on [%(s —Db), 00) and hence that assertion
(a) holds. Now, suppose that g lies in DP N K" . Then h lies in KV by assertion (a).
Moreover, for any pairwise distinct xg,...,x, > 0, by Proposition 4.20 we have that

hn+xg,...,n+x%xp] = aPglan+axp+b,...,an+ax, +b] — 0

as n —y oco. Hence h also lies in DP N K% by Proposition 4.20. This establishes
assertion (b). O
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Chapter 5

Multiple log I'-type functions

In this chapter, we introduce and investigate the map, denote it by X, that carries
any function g lying in

U (DP NKP)

p>0
into the unique solution f to the equation Af = g that arises from the existence
Theorem 3.6. We call these solutions multiple log I'-type functions and we investigate
certain of their properties. We also discuss the search for simple conditions on the
function g: Ry — R to ensure the existence of £g. Further important properties of
these functions, including counterparts of several classical properties of the gamma
function, will be investigated in the next three chapters.

The map X is actually a central concept of the theory developed here. Its definition
and properties seem to show that it is as fundamental as the basic antiderivative
operation. In the next chapter we show that both concepts actually share many
common features.

5.1 The map X and its basic properties

In this section, we introduce the map ¥ and discuss some of its basic properties. We
begin with the following important definition.

Definition 5.1 (Asymptotic degree). The asymptotic degree of a function f: R, —
R, denoted degf, is defined by the equation

degf = —1+min{q e N:fe DI}

For instance, if f is a polynomial of degree p for some p € N, then degf = p.
If f(x) =0 or f(x) = %, or f(x) = In(1 + 1), then degf = —1. If f(x) = sinx or
f(x) =x +sinx, or f(x) = 2%, then degf = co.

It is easy to see that the identity

degf = 1+ degAf

37
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holds whenever degf is a nonnegative integer. However, it is no longer true when
deg f = —1. For instance, for the function f(x) = 0 or the function f(x) = %

<» we have
deg f = deg Af = —1. This shows that in general we have

(degf): = 14 degAf.

We are now ready to introduce the map X. Here and throughout, the symbols
dom(X) and ran(X) denote the domain and range of X, respectively.

Definition 5.2 (The map X). We define the map X: dom(X) — ran(X), where

dom(X) = (J(DPNKP),
p=0

by the following condition: if g € DP N KP for some p € N, then

g = lim fE[g]. (5.1)
n—o0

It is important to note that the map is well defined; indeed, if g lies in both sets
DP N KP and D9 N K9 for some integers 0 < p < ¢, then by Proposition 3.8 both
sequences n — fh[g] and n — fi[g] have the same limiting function. Thus, in view
of Proposition 4.7, we can see that condition (5.1) holds for p = 1 + deg g.

Thus defined, it is clear that the map X is one-to-one; indeed, if Xg; = Zg, for
some functions g; and gs lying in dom(X), then g; = AXg; = AXgs = g». This map
is even a bijection since we have restricted its codomain to its range. We then have
the following immediate result.

Proposition 5.3. The map X is a byection and its tnverse is the restriction of
the difference operator A to ran(X).

Just as the indefinite integral (or antiderivative) of a function g is the class of
functions whose derivative is g, the indefinite sum (or antidifference) of a function g
is the class of functions whose difference is g (see, e.g., Graham et al. [41, p. 48]).
Recall also that any two indefinite integrals of a function differ by a constant while
any two indefinite sums of a function differ by a 1-periodic function. The map ¥ now
enables one to refine the definition of an indefinite sum as follows.

Definition 5.4. We say that the principal indefinite sum of a function g lying in
dom(X) is the class of functions ¢ + £g, where ¢ € R.

Example 5.5 (The log-gamma function). If g(x) = lnx, then we have Xg(x) =
InT'(x), and we simply write

Ylnx = InT(x), x > 0.

Thus, the principal indefinite sum of the function x +— Inx is the class of functions
x — ¢+ InT(x), where ¢ € R. With some abuse of language, we can say that the
principal indefinite sum of the log function is the log-gamma function. O
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Exactly as for the difference operator A, we will sometimes add a subscript to the
symbol X to specify the variable on which the map X acts. For instance, X, g(2x)
stands for the function obtained by applying £ to the function x — g(2x) while
2 g(2x) stands for the value of the function Xg at 2x.

The following proposition provides some straightforward properties of the map X
that will be very useful as we continue.

Proposition 5.6. Let g lre in DPNKP for some p € N. The following assertions
hold.

(a) Zg s the unique solution to the equation Af = g that lies in KP and that
vanishes at 1.

(b) £g lies in DPTINKP = RPTINKP,

(¢) Lg satisfies the identities

n—1
Tgm) = ) g(k), meN, (5.2)
k=
' n—1
Iglx+n) = Zg(x)+Zg(x+k), neN, (5.3)
k=0
and
Lg(x) = fRlgl(x) +pR ™ [Zgl(x),  meN* (5.4)

Proof. Assertions (a) and (b) immediately follow from Theorems 3.1 and 3.6 and
Proposition 4.9. Identities (5.2)—(5.4) follow from (3.1)—(3.3). O

Quite surprisingly, we observe that if g lies in DP N KP for some p € N, then Xg
need not lie in KP*!. The example given in Remark 4.13 illustrates this observation.
We also have that
degig = 1+4degg

whenever deg Zg is a nonnegative integer; but this property no longer holds if deg g =
—1. For instance, considering the functions

2—x x—1
glx) = m and Ig(x) = m,

we have degg = deg Xg = —1. Thus, in general we have
(degZg)+ = 1+degg.

We now give two important propositions, which were essentially proved by Web-
ster [98, Theorem 5.1] in the special case when p = 1.

Proposition 5.7. Let g1 and g2 lie in DPNKP for somep € N and let c1,co € R.
If c1g1 + cags lies in DP NKP, then

Z(c191 +c2g2) = c1Zgys +caZgs.
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Proof. 1t is clear that if g lies in DP N KP, then we have Xcg = cXg for any c € R.
Now, suppose that g;, g2, and g; + gz lie in DP N KP and let us show that

£(g1+92) = Zg1 +Zga.
It is actually enough to consider the following two cases.

1. If both g; and g lie in DP NKY (resp. DPNKP ), then so does g; +g.. It follows
that the function f = £g; + Zg5 is a solution to the equation Af = g; + g» that
lies in K? (resp. K% ) and satisfies f(1) = 0. By the uniqueness Theorem 3.1,
we must have £(g; + g2) = f.

2. If both g; + g and —g; lie in DP N K% (resp. DP NKP), then so does g (use
the first case) and we have

Xgz = Z((91 +9g2) + (—91)) = Z(91 +g2) — Zgi.

This completes the proof. O

Proposition 5.8. Let g lie in DPNKY (resp. DPNKP ) for somep € N, let a > 0,
and let h: R, — R be defined by the equation h(x) = g(x + a) for x > 0. Then h
lies in DP NKY (resp. DP NKP ) and

Th(x) = Zyglx+a) = Zg(x+a)—Xg(a+1).
Proof. Define a function f: Ry — R by the equation
f(x) = Zglx+a)—Zgla+1)

for x > 0. By Corollary 4.21, f is a solution to the equation Af = h that lies in KV
(resp. X% ) and satisfies f(1) = 0. Hence, Lh = f, as required. O

Example 5.9 (see Webster [98]). For any a > 0, consider the function g4: Ry — R
defined by

ga(x) = In .- Inx —In(x + a) for x > 0.

Then g4 lies in D° N KXY (and also in D' NK") and Propositions 5.7 and 5.8 show
that
Irx)ra-+1)

Zge(x) = In Mx+ a)

Also, since g4 is concave on R, we have that Zg, is convex on R, . As Webster [98,
p. 615] observed, this is “a not completely trivial result, but one immediate from the
approach adopted here.” O

Example 5.10 (A rational function). The function

xt4+1 1 2x
glx) = = x+=

x3 +x x x2+1
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clearly lies in D? N K?. Using Proposition 5.7, we then have

£9(x) = (3) + Hxo1 —2ZR(x),

X 1
hix) = x2+1 Sﬁ()ﬁ-i)

lies in D° N K°. Now, recalling that £, 2 = H,_1, it is not difficult to see that

where the function

Zh(X) = C +mHX+1"71

for some ¢ € R, where the function z — H, on C\ (—N*) satisfies the identity

= /1 1
H, = - — )
= é(k z+k>

Indeed, the function f: R, — R defined by the equation

o0
1 x+k—1
f(x) = RHyq11 = Z (k_(><—+—1<—1)2—|—1)’ x>0,
k=1

lies in K° and satisfies Af = h. O

We also have the following surprising proposition, which says that if a function g
lies in DP NKP N K9 for some integers 0 < p < ¢, then it actually lies in

KNI NKPP K nxd,
where the subscripts alternate in sign. The same property holds for Xg.

Proposition 5.11. Let g lie in DP NKP NKP*L for some p € N. Then it lies in
K2 and Lg lies in DPHI A KD A KPT

Proof. Suppose that g lies in KP*L. Since it also lies in DP+1 N KP by Corol-
lary 4.19 it must lie in K% . By Corollary 4.6, g is eventually a polynomial of degree
less than or equal to p. But then, using Corollary 4.6 again, g lies in fKRH. The
result about Xg is then trivial. O

Example 5.12. Let us apply Proposition 5.11 to the function g(x) = Inx with p = 1.
We then obtain that

g liessin D'NnXLNKZNKENKin-.-
while Zg liesin D*NKL NKZNK3ENKEn---,

where £g(x) = InT(x). Moreover, it is easy to see that g is 1-concave on R, 2-convex
on R, and so on, and similarly for Zg. O
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Example 5.13. Applying Proposition 5.11 to the function g(x) = —% Inx withp =0,
we obtain that

g liessin D°NKS NKENKINKEN---
while Lg liesin D'NKCNKLNKZNnKIn---,

where Xg(x) =y1(x) —y1 is a generalized Stieltjes constant (see Section 10.7). Now,
for every q € N, we have g(9+1)(x) = 0 if and only if x = e"a+1. Hence we can easily
see that g is g-convex or g-concave on the unbounded interval (eta+1, 00). O

Remark 5.14. Although the asymptotic degree of a function (see Definition 5.1)
defines an important and useful concept, it is not always easy to compute. For
instance, we can show after some calculus that, for any p € N, the function h,: R, —
R defined by the equation (see Section 11.3)
h al f 0
= — >
p(x) In(x 4+ 1) orx
has the asymptotic degree degh, = p — 1. Thus, it would be useful to have a simple
formula to compute easily the asymptotic degree of any function. On this matter, let
us consider the limiting value (when it exists)
Af(x)

ef = lim x ,
X—00 X

which is inspired from the concept of the elasticity of a function f (see, e.g., Nievergelt
[81]). Computing this limit for the function h, above for instance, we easily obtain
en, = p- Interestingly, we can observe empirically that many functions f lying in KO
satisfy the double inequality

ler] . < 14degf < [1+ef]y.

It would then be useful to find necessary and sufficient conditions on the function f
for this double inequality to hold. O

5.2 Multiple log I'-type functions

Barnes [14-16] introduced a sequence of functions T, Iy, .. ., called multiple gamma
functions, that generalize the Euler gamma function. The restrictions of these func-
tions to R, are characterized by the equations

I
Mpri(x+1) = L(X)

Nnix) = Tx), K1) =1, for x > 0 and p € N¥,
together with the convexity condition

(1P DP M InT,(x) > 0,  x>0.
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For more recent references, see, e.g., Adamchik [1,2] and Srivastava and Choi [93].
Thus defined, this sequence of functions satisfies the conditions

Inlpi1(x) = —ZInTy,(x) and deg(lnol},) = p.

Moreover, it can be naturally extended to the case when p = 0 by setting IH(x) = 1/x.
Now, these observations motivate the following definition.

Definition 5.15. Let p € N.

o A T,-type function (resp. a logl,-type function) is a function of the form
expoXg (resp. £g), where g lies in DP N KP with p =1+ degg.

o A multiple T-type function (resp. multiple logI'-type function) is a I',-type
function (resp. log I',-type function) for some p € N.

When p > 1, expoXg reduces to the function I}, when expog is precisely the
function 1/I},_;, which simply shows that the function I}, restricted to R, is itself a
Ip-type function.

We also introduce the following notation. We let I}, (resp. Logl},) denote the set
of I,-type functions (resp. log I',-type functions). Thus, by definition the set ran(X)
can be decomposed using the following disjoint union

ran(X) = Uran(ZIppmcp) = U Logly, .
p=0 p=0

Thus defined, the set of log I,-type functions can be characterized as follows.

Proposition 5.16. For any function f: Ry — R and any p € N, the following
assertions are equivalent.

(i) f € Logl} .

(1) f(1) =0, f e XP, Af € DPNKP, and deg Af =p — 1.
(w1) f=LAf, Af € DP NKP, and deg Af =p — 1.
(tv) f €ran(X) and deg Af =p — 1.

(v) Ifp>1, then f €ran(X) and degf =p.
Ifp=0, then f € ran(X) and degf € {—1,0}.

Proof. The equivalence (i) < (ii) < (iii) is immediate by definition of X. The impli-
cations (iii) = (iv) = (ii) are straightforward. Finally, the equivalence (iv) < (v) is
trivial. O

From Proposition 5.16 we immediately derive the following characterization of the
set ran(X) of all multiple log I'-type functions.

Corollary 5.17. A function f: Ry — R lkes in ran(X) if and only if there exists
p € N such that f(1) =0, f € XP, and Af € DP NKP.
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5.3 Integration of multiple log I'-type functions

The uniform convergence of the sequence n — fh[g] (cf. Theorem 3.6) shows that
the function Xg is continuous whenever so is g. More generally, we also have the
following result.

Proposition 5.18. Let g lie in € N DP N KP for some p € N. The following
assertions hold.

(a) £g lies in CONDPFL N KP,
(b) Lg s integrable at 0 tf and only if so is g.

(c¢) Letn € N* be so that g is p-convez or p-concave on [n,c0) and let0 < a < x.
The following inequality holds

| (fmgnt)zmtndt‘ < [m

a a

(1) dt 1a7g(n)].

If p > 1, we also have the following tighter inequality

()] 1a7 tgn + 1) — AP Tg(n)| dt.

Jx(fﬂ[g](t) ~5g(t)) dt‘ < J

a

Moreover, the following assertions hold.

(c1) The sequence

converges to zero.

(c2) The sequence

converges to

r(zmtwg(t))dt _ rzg(t—i—l)dt.

a

(c¢3) For any m € N*, the sequence

converges to
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Proof. Assertion (a) follows from Proposition 5.6 and the uniform convergence of
the sequence n +— fh[gl. Assertion (b) follows from assertion (a) and the identity
Yg(x+ 1) — Zg(x) = g(x). Now, for any n € N*, since ph " [Zg](0) = 0 by (1.7), the
function pﬁ“[}:g] is clearly integrable on (0,x) and hence on (a,x). Using (5.4), it
follows that the function f}[g] — Zg is also integrable on (a,x). The inequalities of
assertion (c) then follows from Theorem 3.6(b); and hence assertion (c1) also holds.
Assertion (c2) follows from assertion (c1) and the identity Xg(x + 1) — Xg(x) = g(x).
Finally, using (3.8) we see that the function fh,[g] — fh[g] is integrable on (a,x) and
hence assertion (c3) follows from assertion (c1). O

Remark 5.19. Assertion (c) of Proposition 5.18 has been obtained by integrating the
function pﬂH[Zg] on (a,x). The first inequality in assertion (c) then clearly shows
that the sequences of functions defined in assertions (c1)—-(c3) converge uniformly on
any bounded subset of R,. Now, we also observe that the integral

r 0P+ 5 g (t) dt

a

itself can be integrated on (a, x), and we can repeat this process as often as we wish.
After n integrations, we obtain

ﬁj (x— )™ pP (s gl(t) dt,

and, proceeding as in Proposition 5.18, it is then clear that the following inequality
holds

Jx(x—t)“—l (fR [g)(t) — Zg(t)) dt’ < r(x—t)“—l [t]

a a

()] at 1a7g(m).

In particular, this inequality shows that the left-hand integral converges uniformly
on any bounded subset of R to zero. O

Let us end this section with the following important remark. In Proposition 5.18
we have assumed the continuity of function g to ensure that the integrals of both
functions g and X g be defined. Of course, we could somewhat generalize our result by
relaxing this continuity assumption into weaker properties such as local integrability
of both g and Xg. However, for the sake of simplicity, in this work we will always
assume the continuity of any function whenever we need to integrate it on a compact
interval (see also Remark 9.1). In this case, continuity can be regarded simply as
a handy assumption to keep the results simple. We then encourage the interested
reader to generalize those results by searching for the weakest assumptions. This
may sometimes lead to challenging but stimulating problems.

5.4 The quest for a characterization of dom(X)

Recall that the map X is defined on the set

dom(X) = (J(DPNnKP).
p=0
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In this respect, it would be useful to have a very simple test to check whether a given
function g: R, — R lies in this set. By Propositions 4.2 and 4.7, the condition that
g lies in DL NKP is clearly necessary. In the next proposition we show that, if g is
not eventually identically zero, then it must also satisfy the following property

1
imsup Y

imsup = s < L (5.5)

We first recall the following discrete version of L’Hospital’s rule, also called Stolz-
Cesaro theorem. For a recent reference see, e.g., Ash et al. [12].

Lemma 5.20 (Stolz-Cesaro theorem). Let n — a, and n — b, be two real se-
quences. If the second sequence 1s strictly monotone and unbounded, then
1~ an n+1 — Qn

. . an+ . . an . an . a
lim inf < liminf — < limsup — < limsup .
n—oo n+1— bn n—oo n n—oo n n—oo bn+1 —bn

In particular, if
for some £ € R, then

Proposition 5.21. If g lies in dom(X) and ts not eventually identically zero,
then condition (5.5) holds.

Proof. Assume that g lies in DP NXKP for some p € N. Of course we can assume that
p = 1+deg g. We can also assume that g is not eventually a polynomial; for otherwise
the condition (5.5) clearly holds. If p = 0, then the function x — |g(x)| eventually
decreases to zero and hence condition (5.5) holds. Now suppose that p > 1. Then
the function APg lies in D° N K° and there are two exclusive cases to consider.

(a) Suppose that the eventually monotone sequence n — AP~1g(n) is unbounded.
This sequence is actually eventually strictly monotone. Indeed, otherwise the
function APg € X° would vanish in any unbounded interval of R, , and hence
would eventually be identically zero. Equivalently, g would eventually be a
polynomial of degree less than or equal to p — 1, a contradiction. Using the
Stolz-Cesaro theorem (see Lemma 5.20) and the fact that condition (5.5) holds
for APg, we then obtain

. AP lg(n+1) ) APg(n+1)
limsup —————— < limsup ————
nonoo  APTlg(n) N—y 00 Apg(n)

Iterating this process, we see that condition (5.5) holds for g.

(b) Suppose that the sequence n — AP~!g(n) has a finite limit (which is necessarily
nonzero by minimality of p). If p = 1, then condition (5.5) holds trivially. If
P > 2, then the eventually monotone sequence n — AP~2g(n) is unbounded
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and we can show as in the previous case that it is actually eventually strictly
monotone. Using the Stolz-Cesaro theorem, we then obtain
AP lg(n+1)

. AP 2g(n+1) .
limsup ————— < limsup ——— = 1.
o AP2g(n) s AP-Ig(n)

Iterating this process, we see that condition (5.5) holds.
This completes the proof. O

Remark 5.22. We observe that the left side of (5.5) is not always a limit. For instance,
the function g: R, — R defined by the equation

1 1.
g(x) = 7 <1+3s1nx> for x >0
lies in D° N K (see Remark 4.13) but the function g(x + 1)/g(x) is a nonconstant
periodic function. The first example in Remark 6.21 also illustrates this behavior.
On the other hand, a function g € K° that satisfies condition (5.5) need not lie in
DR. For instance, for any q € N the function

gq(x) = x4 +sinx
lies in K9\ K971, and hence also in X°, and satisfies

g e tb o
N—N 0 gq(n)

However, it does not lie in DY. O

We observe that condition (5.5) is very easy to check for many functions g lying
in X°. Thus, this condition provides a simple and useful test. In particular, when
the inequality in (5.5) is strict, the sequence n — g(n) is summable by the ratio test,
and hence g lies in DY N K°. On the other hand, when the inequality is an equality,
it is not known whether this condition, together with the property that g lies in X°,
are also sufficient for g to lie in dom(X).

Now, it is easy to see that a function g: R, — R lies in DY’ if and only if there
exists p € N for which the sequence n — APg(n) converges. In particular, if we
assume that g lies in K*°, then g does not lie in DY (and hence it does not lie in
dom(X)) if and only if for every p € N the sequence n — APg(n) tends to infinity.
On the other hand, we can observe empirically that condition (5.5) fails to hold for
many functions g lying in K* \ Dg°. Examples of such functions include g(x) = 2*
and g(x) = I'(x). It seems then reasonable to think that this observation follows from
a general rule. We then formulate the following conjecture.

Conjecture 5.23. If a function g: R, — R lies KX*° and is not eventually identically
zero, then it also lies in DY if and only if condition (5.5) holds.
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Chapter 6
Asymptotic analysis

The asymptotic behavior of the gamma function for large values of its argument can be
summarized as follows: for any a > 0, we have the following asymptotic equivalences
(see Titchmarsh [96, Section 1.87])

MNx+a) ~ xT(x) as x — 0o, (6.1)
I'x) ~ v2m e Xx¥3 as x — 00,
MNx+1) ~ V2mxe *x* as x — 00, (6.3)

where both formulas (6.2) and (6.3) are known by the name Stirling’s formula.

In this chapter, we investigate the asymptotic behaviors of the multiple log I'-type
functions and provide analogues of the formulas above.

More specifically, for these functions we establish analogues of Wendel’s inequal-
ity, Stirling’s formula, and Burnside’s formula for the gamma function. We also
introduce the concept of the asymptotic constant, an analogue of Stirling’s con-
stant, and an analogue of Binet’s function related to the log-gamma function, and
we show how all these generalized concepts can be used in the asymptotic analysis of
multiple log I'-type functions. We also establish a general asymptotic equivalence for
these functions.

We revisit Gregory’s summation formula, with an integral form of the remainder,
and show how it can be derived very easily in this context. Using this formula, we then
introduce a generalization of Fuler’s constant and provide a geometric interpretation.

6.1 Generalized Wendel’s inequality

Recall that if a function g lies in DP N KP for some p € N, then the function Xg
lies in fRﬁH by Proposition 5.6. At first glance, this observation may seem rather
unimportant. However, its explicit statement tells us that for any a > 0 we have

PHrgl(a) =0 as X — 00,

49
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or equivalently,

P
Yg(x+a)— Z )A g -0 as x — 00. (6.4)
j=1

This is actually a nice convergence result that reveals the asymptotic behavior of the
difference Lg(x + a) — Zg(x) for large values of x. The special case when p = 1 was
established by Webster [98, Theorem 6.1].

When g(x) = Inx and p = 1, this result reduces to

InT(x+a)—InT(x)—alnx — 0 as x — 00,

which is precisely the additive version of the asymptotic equivalence given in (6.1).
We thus observe that (6.4) immediately provides an analogue of the asymptotic equiv-
alence (6.1) for all the multiple log I'-type functions.

Now, we observe that formula (6.1) was also established by Wendel [99], who first
provided a short and elegant proof of the following double inequality

aya-1 MNx+ a)
1+ — < —— < 1, 0, 0<axl, 6.5
( + ) I(x)xe x> ¢ (6:5)
or equivalently, in the additive notation,
a
(afl)ln(qu;) < p2Mnol(a) < 0, x>0, 0<a<l, (6.6)
where
p2[lnol(a) = InT(x+a)—InT(x) —alnx. (6.7)

We can readily see that this double inequality is actually a simple application of
Lemma 2.7 to the log-gamma function with p = 1. Its generalization to all the
multiple log I'-type functions is then straightforward and we present it in the following
theorem. We call it the generalized Wendel inequality.

Theorem 6.1 (Generalized Wendel’s inequality). Let g lie tn D? NXKP for some
p € N and let + stand for 1 or —1 according to whether g lies in X, or XP . Let
also x > 0 be so that g is p-convez or p-concave on [x,00) and let a > 0. Then

we have
0 < +(-Depaa(a) 2™ Zglla) < +(=1)|(%,7)
(51| aPglv),

(APZg(x + a) — APZg(x))

< £(-1) [a]

with equalities if a € {0,1,...,p}. In particular, ppH[Zg](a) —0asx = 0. If
p > 1, we also have

VA
H

(—1)

< (=D

0 < +(-1)ep(a)pPigl(a)

(‘p 1)
() ‘ APg(x),

with equalities if a € {0,1,...,p —1}. In particular, p%[gl(a) — 0 as x — oo.

(AP Hg(x+ a) — AP g(x))
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Proof. Negating g if necessary, we can assume that it is p-convex on [x, c0). By the
existence Theorem 3.6, the function g is then p-concave on [x,c0). By Lemma 2.5
and Proposition 4.11, the function APg is negative and increases to zero on [x, 0o).
Thus, for any a > 0 we have

[a]—1
(1) ) APg(x+j) < (—1)[a]APg(x).
j=0
We then derive the first inequalities by applying Lemma 2.7 to f = Xg. Suppose now
that p > 1. By Corollary 4.19, we have that g is (p — 1)-concave on [x, c0). We then
derive the remaining inequalities by applying Lemma 2.7 to f = g. O

A symmetrized version of the generalized Wendel inequality can be easily obtained
simply by taking the absolute value of each of its sides. This provides a coarsened, but
simplified form of the generalized Wendel inequality. For instance, when g(x) =lnx
and p = 1 we then obtain the following inequality

|1n|"(x+a)—1nr(x)—a1nx‘ < |a—1\1n<1—|—%), x>0,a>0, (6.38)
that is, in the multiplicative notation,
a\ —la—1l MNx+a) a\la—1|
1 f) < XY (1 f) , 0,a>0. (69
( + X I'(x)xa + X x> ¢ (6.9)

We then have the following immediate corollary, which provides a symmetrized ver-
sion of the generalized Wendel inequality.

Corollary 6.2. Let g lie in DP NKP for some p € N. Let also x > 0 be so that g
s p-convez or p-concave on [x,00) and let a > 0. Then we have

(51|14 g(x)],

with equalities if a € {0,1,...,p}. In particular, pE’Ll[Zg](a) —0asx = 0. If
p > 1, we also have

P Egl(a)| <

x

()] 1aPZg(x+a) — APZg() < [a]

Ip%lgl(a)l <

(3:1)‘ |AP (x4 a) — AP T g(x)| < [a]

(D) |1a7gx),
with equalities 1f a € {0,1,...,p —1}. In particular, p¥[gl(a) — 0 as x — oo.

Example 6.3. Applying Theorem 6.1 and Corollary 6.2 to the function g(x) = Inx,
for which we have p = 1+ degg = 1 and Xg(x) = InT'(x), we immediately retrieve
the inequalities (6.5)—(6.9) and hence also the asymptotic equivalence (6.1). Further
inequalities can actually be obtained by considering higher values of p. For instance,
since g also lies in D? NX?, we can set p = 2 in Corollary 6.2 and we then obtain the

inequalities
A (14 A e N5t )
( +x> +x) ( +x+1) S OT(x)xe

(3) a1 =121
1 ay l(“2)] a
< <1+X> (1+§) (1+X+1> .
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Thus, we can see that the central function in these inequalities can always be “sand-
wiched” by finite products of powers of rational functions. For further inequalities
involving this central function, see, e.g., Srivastava and Choi [93, pp. 106-107]. O

Discrete version of the generalized Wendel inequality. The restrictions to the
natural integers of the generalized Wendel inequality and its symmetrized form are
obtained by setting x =n € N* in the inequalities of Theorem 6.1 and Corollary 6.2.
In view of identity (5.4), the symmetrized forms then reduce to those of the existence
Theorem 3.6.

For instance, when g(x) = Inx and p = 1, the symmetrized version of generalized
Wendel’s inequality is given in (6.8) while its discrete version can take the form

IInT(x) — fi ] (x)] < |x—1] ln(l—i—%), x>0, neN,

where

n—1 n—1
filln](x) = ) Ink—) In(x+k)+xlnn.
k=1 k=0

This latter inequality clearly generalizes Gauss’ limit (1.6), which simply expresses
that
InT(x) = lim f}[ln](x), x > 0.

n—o0

6.2 The asymptotic constant

We now introduce a new important concept that will play a key role in our theory,
namely the asymptotic constant. This concept will actually be used intensively
throughout the rest of this book.

Definition 6.4 (Asymptotic constant). The asymptotic constant associated with a
function g € C° Ndom(X) is the number

1 1
olgl = J Yglt+1)dt = J (Zg(t) +g(t)) dt. (6.10)
0 0

Using Definition 6.4, we can readily see that the following identity holds for any
function g lying in €° N dom(X)

x+1 X
J Zg(t)dt = cr[gHJ g(t) dt, x > 0. (6.11)

x 1

Indeed, both sides are functions of x that have the same derivative and the same value
at x = 1.

Example 6.5 (Raabe’s formula). Taking g(x) =Inx in (6.10), we obtain

1
olgl = J InT(t+1)dt = —1+%1n(271).
0
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Combining this result with (6.11), we obtain the following more general identity

x+1 1
J InT(t)dt = 51n(27'[)+xlnx—x, x > 0.
X

This identity is known by the name Raabe’s formula (see, e.g., Cohen and Friedman
[30]). We will discuss this formula and investigate its analogues in Section 8.5. O

Identity (6.11) will also play a very important role in this work. In this respect,
it is clear that the integral

x+1
J Ig(t)dt, x>0, (6.12)

cancels out the cyclic variations of any 1-periodic additive component of Xg in the
sense that the function
x+1
X = J w(t) dt

X

is constant for any 1-periodic function w: Ry — R. Thus, the integral (6.12) can be
interpreted as the trend of the function Xg, just as a moving average enables one to
decompose a time series into its trend and its seasonal variation. In this light, identity
(6.11) simply tells us that the trend of the function Xg is precisely the antiderivative
of g (up to an additive constant).

Let us end this section with the following two technical results related to the
asymptotic constant.

Proposition 6.6. Let g1 and go lie itn DPNKP for somep € N and let c1,co € R.
If c1g1 + cags lies in DP NKP, then

olc191 +c292] = ciolg1] + czolgz].

Moreover, we have o[1] = %, where 1: R, — R is the constant function 1(x) = 1.

Proof. The first part of the statement is an immediate consequence of Proposition 5.7.

Now, we clearly have ~1 = x — 1 and hence o[1] = % O

Proposition 6.7. Let g lie in C° Ndom(X), let a > 0, and let h: R, — R be
defined by the equation h(x) = g(x + a) for x > 0. Then

olh] = 0[9]+J o(t) dt — Tg(a+1).

Proof. Using Proposition 5.8 we obtain

1 a+2
olh] = J Iglt+a+1)dt—Xg(la+1) = J Tg(t)dt—Zg(a+1).

0 a+1

We then get the result using (6.11). O
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6.3 Generalized Binet’s function

The Binet function related to the log-gamma function is the function J: Ry — R
defined by the equation (see, e.g., Cuyt et al. [31, p. 224])

J(x) = InT(x)— %1n(27t) +x— (x — ;) Inx for x > 0. (6.13)

Using identity (6.7) and Raabe’s formula (see Example 6.5), we can easily provide
the following integral form of Binet’s function

1
Jix) = —J' p2[lnol(t) dt, x > 0.
0
This latter identity motivates the following definition, in which we introduce a
generalization of Binet’s function. Recall first that, for any q € N and any x > 0,
the function t — py[g](t) is continuous whenever so is g. In this case, since it also
vanishes at t = 0, it must be integrable on (0, 1).

Definition 6.8 (Generalized Binet’s function). For any g € €° and any q € N, we
define the function J9[g]: R, — R by the equation

1
J9gl(x) = —J pdgl(t) dt for x > 0. (6.14)
0
We say that the function J9[g] is the generalized Binet function associated with the
function g and the parameter q.

Taking g =1Inol" and q = 1+deg g = 2 in identity (6.14), we thus simply retrieve
the Binet function J(x) = J?[Inol](x) related to the log-gamma function, as defined
in (6.13).

In the following two propositions, we collect a few immediate properties of the
generalized Binet function. To this end, recall first that, for any n € N, the nth
Gregory coefficient (also called the nth Bernoullt number of the second kind) is
the number G,, defined by the equation (see, e.g., [20-22,72])

1
Gn = J (t)dt for n > 0.

The first few values of G, are: 1, %,f%, i)*%v ..

in absolute value and satisfy the equations

.. These numbers are decreasing

Y IGnl =1 and  Gn = (-1)"YGn| forn>1. (6.15)
n=1

Proposition 6.9. Let g € C° and q € N. Then, for any x > 0, we have

X

q—1 ) x+1
Flgl) = Y Gialgl— | glvar. (6.16)
j=0
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In particular,
AJ9gl =J9Ag]  and  J9"lgl—]J9g] = GqA%g. (6.17)

Proof. ldentity (6.16) follows immediately from (1.7). The other two identities are
trivial. O

Proposition 6.10. Let g lie in C° Ndom(X) and let q € N. Then, for any x > 0
and any n € N*, we have

X q
JEgln) = Igix)—olgl | gltdt+ ) Gal g, (618)
1 1
1
J9tEZgln) = J (falgl(t) — Zg(t)) dt. (6.19)
0
In particular,
AJITZg] = ]9 g, Jatc+Zg] = J9TZgl, ceR,
and
olgl = —J'Zgl(1).
Proof. 1dentity (6.18) follows from (6.11) and (6.16). Identity (6.19) follows from
(5.4) and (6.14). The remaining identities are trivial. O

As we will see in the rest of this book, many subsequent definitions and results
can be expressed in terms of the generalized Binet function.

6.4 Generalized Stirling’s formula

Interestingly, the Binet function J(x) = J2[Z1n](x) defined in (6.13) clearly satisfies
the following identity (compare with Artin [11, p. 24])

Mx) = vVomx* 2 e xHX

and hence Stirling’s formula (6.2) simply states that J(x) — 0 as x — oo. This

observation seems to reveal a way to find a counterpart of Stirling’s formula for

any continuous multiple log I'-type function. In fact, we only need to show that the

function JP"![Lg] vanishes at infinity whenever g lies in €°NDP NKP for some p € N.

In the next theorem and its corollary, we establish this fact by simply integrating each

side of the generalized Wendel inequality and its symmetrized version on a € (0, 1).
Let us first define the sequence n +— G,, by the equations

n [oe]

Gn =1-) Gl = > G| forneN.

j=1 j=n+1
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In view of (6.15), we see that the sequence n ++ G, decreases to zero. Its first

values are: 1, %, 15—2, %, %, .... Moreover, from the straightforward identity (see, e.g.,

Graham et al. [41, p. 165])

we easily derive

1 1
|1 ra = o -
0 0

We now have the following two results, which immediately follow from Theo-
rem 6.1, Corollary 6.2, and identities (6.20).

Ll () dt‘ = Gn. (6.20)

Theorem 6.11. Let g lie in C°NDP NKP for some p € N and let + stand for 1
or —1 according to whether g lies in XY or XP . Let also x > 0 be so that g is
p-convez or p-concave on [x,00). Then we have

1

+ (1P P Igl(x) < =+ (—1)p+1J (tgl) (APZg(x +t) — APXg(x)) dt
0

< £(-1)GpAPg(x).

o
VA

In particular, JPT[Zg](x) — 0 as x — co. Ifp > 1, we also have

1

0 < (PPN < E(=1)P J (571) (AP g(x+1) — AP g(x)) dt
0

< 4 (1) Gy APg(x).
In particular, JP[gl(x) — 0 as x — oo.

Corollary 6.12. Let g lie in C°NDP NKP for some p € N. Let also x > 0 be so
that g ts p-convez or p-concave on [x,00). Then we have

1
PR <[] () @ Eglern - avEg) a] < Gylargixl
0

In particular, JPT[Zg](x) — 0 as x — oo. If p > 1, we also have

1
Pl <[] (570 (a7 gt 0 - an gt | < Gpslavgivl

In particular, JP[gl(x) — 0 as x — oo.

Both Theorem 6.11 and Corollary 6.12 state that JP*1[Zg] vanishes at infinity
whenever g lies in €°NDP NKP for some p € N. This result is precisely the analogue
of Stirling’s formula for all the continuous multiple log I'-type functions. As it is one
of the central results of our theory, we state it explicitly in the following theorem.
We call it the generalized Stirling formula. We also include the property that JP[g]
vanishes at infinity.
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Theorem 6.13 (Generalized Stirling’s formula). Let g lie in CCNDP NKP for some
p € N. Then both functions JPT1[Zg] and JP[g] vanish at infinity. More precisely,
we have

X P
Zg(x) fJ' g(t)dt+ Z GjAjflg(x) — olg] as x — 0o (6.21)
1 P
and
x+1 p-1 .
J g(t) dt—ZGjA]g(X) — 0 as x — 00. (6.22)
X ]70

Proof. By Theorem 6.11, the functions JP*1[£g] and JP[g] vanish at infinity when
p > 0 and p > 1, respectively. The function JP[g] also vanishes at infinity when
p = 0; indeed, in this case |g(x)| eventually decreases to zero and we have

1
1°lgl(x)| = Lg(x+t) dt‘ < lgx)) = 0 as x — oo.

Formulas (6.21) and (6.22) then immediately follow from (6.16) and (6.18). O

The generalized Stirling formula (6.21) is actually the highlight of this chapter.
It enables one to investigate the asymptotic behavior of the function Xg for large
values of its argument. It also justifies the name “asymptotic constant” given to the
quantity o[g] introduced in Definition 6.4. Moreover, combining (6.4) with (6.21),
we immediately derive the asymptotic behavior of Xg(x + a) for any a > 0. We
also observe that alternative formulations of (6.21) in the case when p =
established by Krull [54, p. 368] and later by Webster [98, Theorem 6.3].

In the special case when g lies in D! N X, the generalized Stirling formula and
the asymptotic constant take very special forms. We present them in the following
proposition.

1 were

Proposition 6.14. If g lies in D1 NK°, then we have

Yg(x) — Z g(k) as x — 0o. (6.23)
k=1
If, in addition, we have g € C°, then g is integrable at infinity and

00

olg = 3 gl | gltar
k=1

1

Proof. By definition of the map X, we have

Tg(x) = ) g(k)—) glx+k), x>0
k=1 k=0

where the second series tends to zero as x — oo by Theorem 3.13. The claimed
expression for o[g] then immediately follows from formula (6.21). O
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Example 6.15. Let us apply our results to the concave function g(x) = lnx with
p = 1. Using (6.16) and (6.18), we first obtain

JPllnol(x) = Jx) = lnl"(x)—;ln(27r)+x—<x—;> Inx,
1(x+1)1n(1+i>.

Now, Theorem 6.11 provides the following inequalities for any x > 0

In (1 + i) , (6.24)

1 1
0 < —1+(X+1)1n<1+> < 1n<1+>.
X

J* I} (x)

N =

1 1 x 3
< < = 2 [ [
0 < J(x) < 2(X+1) In (1+x) 577 S

That is, in the multiplicative notation,

1 (x+1)2 1
1< L")l < e i (1+1) < <1+1) , (6.25)
V2me X x*"2 X
1 X 1 x+1
(1—1—) < e < (1+> .
X X

Thus, we retrieve Stirling’s formula (6.2) and (6.3), together with the well-known
asymptotic equivalence (compare with Artin [11, p. 20])

1 X
<1+> ~ e as X — 00.
X

It is actually quite remarkable that the first two inequalities in (6.24) and (6.25)
are precisely what we get when we “integrate” the additive version of the Wendel
inequality (6.5) on the unit interval (0, 1).

Now, the coarsened inequality

JPHEgl(x)] < Gy lAPg(x)]

given in Corollary 6.12 takes the following simple form (in the multiplicative notation)

1 1
1)\ 2 I 1\2
(1+) <¢1< <1+> .
X 2me X x*"2 X

Note that tighter inequalities can also be obtained by considering higher values of p
in Corollary 6.12. For instance, taking p = 2 we obtain

3 5 11 5
1)\ * 2 12 I 1)\ 12 2\ 12
() (143)" < 0 (D) (a2
X X Vame X x*"z X X
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Taking p = 3 we obtain

13

23 3
1 T 2a 2 12 3 —s8 r
() F ()P ()T e
X X X V2me X x*"2

31 _r
1) 2 2\ ¢ 3
< (14 - 14 - 1+ -
X X X

Thus, we see that the central function in these inequalities can always be bracketed
by finite products of radical functions. O

00|

In the last part of Example 6.15, we have illustrated the possibility of obtain-
ing closer bounds for the generalized Binet function JP*![ZIn](x) by considering in
Corollary 6.12 any value of p that is higher than 1+ degg. Actually, it is not difficult
to see that this feature applies to every continuous multiple log I'-type function. We
discuss this topic in Appendix D and show that the inequalities actually get tighter
and tighter as p increases.

Remark 6.16. We observe that Theorem 6.11 together with the generalized Stirling
formula (Theorem 6.13) have been immediately obtained by “integrating” the gener-
alized Wendel inequality (Theorem 6.1) on the unit interval. In turn, the generalized
Wendel inequality is a straight application of Lemma 2.7 to the function f = Xg.
These remarkable facts show the considerable importance of Lemma 2.7 in this the-
ory: it was first crucial to derive our uniqueness and existence results, and now it
provides very nice counterparts of Wendel’s inequality and Stirling’s formula, with
short and elegant proofs. We will use Lemma 2.7 again in Section 6.7 for an in-depth
investigation of Gregory’s summation formula. %

Improvements of Stirling’s formula. The following estimate of the gamma func-
tion is due to Gosper [40]

1
1)\ 2
Mx) ~ vV2me™™ X2 (1 + 6) as x — 0o,
X
and is more accurate than Stirling’s formula. On the basis of this alternative approx-
imation, Mortici [76] provided the following narrow inequalities

1 r %
(o2 e M (1) s
2x 2me X xX 2 2x

where o = £ and B = (391/30)'/3 — 2 ~ 0.353. We actually observe that the quest
for finer and finer bounds and approximations for the gamma function has gained an
increasing interest during this last decade (see [26, 28,29, 36, 65, 75-78, 100, 101] and
the references therein). Some of these investigations could be generalized to various
multiple I'-type functions. New results along this line would be welcome.

Webster’s double inequality. We have seen that Theorems 6.1 and 6.11 provide

very useful bounds for both quantities pEH[Zg](a) and JPT[Zg](x). It is actually
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possible to provide tighter bounds for these quantities using again the p-convexity
or p-concavity properties of the function g. For instance, one can show that if g lies
in D! N X! and if x > 0 and a > 0 are so that g is concave on [x + a, co), then the
following double inequality hold

la]
Y glx+¥k) +({a—1)glx+a)—agx) < p2lZgl(a)
k=0

La]
< ) glx+k) —g(x+a)+{agx+lal+1)—ag(x). (6.26)
k=0
This inequality was actually provided by Webster [98, Eq. (6.4)] to establish the limit
(6.4) in the case when p = 1.
Now, assuming that g is continuous, we can integrate every expression in the
inequalities above on a € (0, 1), and we then obtain the following bounds for J2[Zg](x)

0 < —JPlgdx) < JPlEZglx)

1
< —Plgix) — J

1
tglx+t)dt+ 2 glx+1). (6.27)
0

For instance, for g(x) = Inx, we obtain (in the multiplication notation)

1 1 2

1 X+3 r(x) N 1 E(XJrl)

1 <etf14+= L ————5 < e 2 2|1+ - 2
S € ( er) S Vemexxx: ¢ < +X> ’ (6:28)

which provides a better lower bound in the inequalities (6.25).

Bl

In Appendix E, we discuss this interesting issue and provide a generalization to
multiple log I'-type functions of the Webster double inequality (6.26) and its “inte-
grated” version (6.27).

Generalized Stirling’s constant. The number /27 arising in Stirling’s formula
(6.2) and Example 6.15 is called Stirling’s constant (see, e.g., Finch [37]). For certain
multiple I'-type functions, analogues of Stirling’s constant can be easily defined as
follows.

Definition 6.17 (Generalized Stirling’s constant). For any function g € C°Ndom(X)
that is integrable at 0, we define the number

1 1
olgl = G[g]fl[ g(t) dt — J Tg(t) dt.
0 0
We say that the number exp(clg]) is the generalized Stirling constant associated
with g.

When g is integrable at 0, the generalized Stirling constant exists and hence the
generalized Stirling formula (6.21) can take the following form

X P
Zg(x)—J g(t) dt-i—ZGjAj_lg(x) — olg] as x — 00.
0 j=1
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It is important to note that, contrary to the generalized Stirling constant, the
asymptotic constant o[g] exists for any function g lying in €° N dom(X), even if it is
%, we have that olg] is the
Euler constant v (see Example 8.19) while G[g] does not exist.

This shows that the asymptotic constant is the “good” constant to consider in
this new theory. It actually enables us to derive for multiple log'-type functions
analogues of several properties of the gamma function. For instance, we have seen
that it was very useful to derive the generalized Stirling formula. To give a second
example, we will see in Section 8.6 that it also enables us to derive analogues of Gauss’
multiplication formula for the gamma function.

not integrable at 0. For instance, for the function g(x) =

6.5 Analogue of Burnside’s formula

Let us recall Burnside’s formula, which states that

1

Fx) ~ \/ﬁt(xz) B as X — 00. (6.29)

e

This formula actually provides a much better approximation of the gamma function
than Stirling’s formula. It was first established by Burnside [27] (see also Mortici [75])
and then rediscovered by Spouge [91]. In this section, we provide an analogue of
Burnside’s formula for any continuous I',-type function when p = 0 and p = 1, and
we note that such an analogue no longer exists when p > 2.

Let us first state the following corollary, which particularizes the generalized Stir-
ling formula when the function g lies in C° N D% N XK. This corollary actually follows
immediately from (6.11) and (6.21).

Corollary 6.18. Let g lie in C°ND°NK°. Then

x+1
Zg(x)—J Yg(t)dt — 0 as x — 00.

X

Equivalently,

Zg(x)—J g(t)dt — olg] as x — 00.
1

Corollary 6.18 tells us that, when g lies in C° N D° N K°, the function Zg(x)
coincides asymptotically with its trend (i.e., the integral (6.12)) and, in a sense,
behaves asymptotically like the antiderivative of function g.

It is natural to think that a more accurate trend of £g can be obtained by con-
sidering the centered version of the integral (6.12), namely

x+3 x—1
J Tg(t)dt = cr[g]JrJ g(t) dt, x>z,

On this matter, in the following proposition we provide a double inequality that
shows that Xg(x) coincides asymptotically with this latter trend whenever g lies in
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CONDON KO or in €% N DI N K. However, it is not difficult to see that in general
this result no longer holds when g lies in C° N D? N K2. The logarithm of the Barnes
G-function (see Section 10.5) could serve as an example here.

Proposition 6.19. Let p € {0,1}, g € CO°NDP NXKP, and x > 0 be so that g is
p-convez or p-concave on [x,00). Then

1 x+1 o
‘Zg (x+2)—J Zg(t)dt' < [PPzg)] < GplaTg(x)l

X

In particular,

1
X+§

Zg(x)—J Yg(t)dt — 0 as x — 0o,
x
or equivalently,

3

Zg(x)fj g(t)dt — olgl as x — 00.
1
Proof. Using Corollary 6.12, we see that it is enough to prove the first inequality.
Let
1 x+1
h(x) = Zg (x—i— 2) —J Lg(t) dt.

X
Consider first the case when p = 0 and suppose for instance that g lies in X9 ; hence
Y g is decreasing on [x, 00). If h(x) = 0, then we clearly have

x+1

h(x) = hix) < zmx)—J g(t)dt = JHEg)(x).

X

If h(x) <0, then we have

x+1 1 x+% 1 1
h(x)| = J Ig(t)dt—ZXZg <X + ) < J Yg(t)dt—=Xg <x + )

y 2 . 2 2

and it is geometrically clear that the latter quantity is less than J'[Zg](x).

Suppose now that p = 1 and for instance that g lies in K ; hence Zg is concave on
[x,00). Applying the Hermite-Hadamard inequality to Xg on the interval [x,x+ 1], we
obtain that h(x) > 0. Applying the trapezoidal rule to £g on the intervals [x,x + %]
and [x + %, x + 1], we obtain the following inequality

1 1
Zg(t)dt— 3 Eglx+1) — > Ig(x),

where the right-hand quantity is exactly —J2[£g](x). This completes the proof. [

Applying Proposition 6.19 to the function g(x) = lnx with p = 1, we retrieve
Burnside’s formula (6.29). Thus, Proposition 6.19 gives an analogue of Burnside’s
formula for any continuous I',-type function when p € {0, 1}. It also shows that this
new formula provides a better approximation than the generalized Stirling formula
whenever g lies in C° N DP N KP with p € {0, 1}.
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6.6 A general asymptotic equivalence

The following result provides a sufficient condition for a continuous multiple logI'-
type function to be asymptotically equivalent to its (possibly shifted) trend.

Proposition 6.20. Let g lie in €° Ndom(X) and let a > 0 and c € R. When
c + Xg vamishes at infinity, we also assume that

c+Xgn+1) ~ c+Zg(n) as N —y 00. (6.30)

Then we have

x+1
c+Xglx+a) ~ C+J Zg(t)dt as x — 0o. (6.31)

X

If g does not lie in Dgl, then we also have

X

Yg(x+a) ~ C+J g(t)dt as x — 00.
1

Proof. Let us first prove that (6.30) holds for any g lying in €° N dom(X), even if
c+Xg does not vanish at infinity. Of course, this result clearly holds if g is eventually
a polynomial (since so is Xg in this case). Thus, we will now assume that g is not
eventually a polynomial.

Suppose first that p = 1+ degg = 0. If g lies in Dy*, then (6.30) follows
immediately from (6.23). If g lies in D\ Dy ! then it is not integrable at infinity by
the integral test for convergence. By the generalized Stirling formula (6.21), it follows
that the eventually monotone sequence n — Zg(n) is unbounded. This sequence is
actually eventually strictly monotone; indeed, otherwise the function AXg = g €
K would vanish in any unbounded interval of R, and hence would eventually be
identically zero, a contradiction. We then obtain

wzl—i—ﬂ%l as n —y 00,
c+Xg(n) c+ XZg(n)
and hence (6.30) holds whenever p = 0.

Suppose now that p = 1+ degg > 1. In this case, we have that APg lies in

DC N KP. By the uniqueness Theorem 3.1, we also have

APLg = cp +XAPg

for some c,, € R, and it is clear (by minimality of p) that this latter function cannot
vanish at infinity. Moreover, we can show as above that the sequence n — XZAPg(n)
is eventually strictly monotone. In view of the first case, we then have

APYXg(n+1) cp + ZAPg(n +1)

P— 1 .
APLg(n) o +ZAPGM) as M N o0
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Let us now show that the sequence

c+AP 1Eg(n+1)
c+ AP—1xg(n)

exists for large values of n and converges to 1. By minimality of p, the function
AP71%g lies in DZ \ Df and hence the sequence n — AP~1Ig(n) is unbounded.
Moreover, we can show as above that this sequence is eventually strictly monotone.
Hence, the sequence above eventually exists and, using the Stolz-Cesaro theorem (see
Lemma 5.20), we have that

c+AP1Egn+1) . APIg(n+1)

li = lim —— = L
nglgo c+AP~-1Xg(n) ngl(l)o APXg(n)

Iterating this process, we finally see that condition (6.30) holds for any p € N.
We can now easily see that

c+Igx+a) ~c+Xg(x) as x — oo. (6.32)
Indeed, this result clearly holds if both x and a are integers. For instance we have
c+Xgn+2) ~ c+Zgn+1) ~ c+Zg(n) as N —y 00.

Otherwise, assuming for instance that Xg is eventually increasing and nonnegative,
for sufficiently large x we have

c+Xg(|x+al) o c+Zg(x+a) < c+ Xg([x+al)
c+2g([x]) = c+ZIglx) T c+Zg(x])
and (6.32) then follows by the squeeze theorem.

Finally, assuming again that Xg is eventually increasing and nonnegative, for
sufficiently large x we have

e+ Zgx) o c+f:+1>:g(t)dt o c+Xgx+1)
c+Igx) c+ Zg(x) S c+Zg(x)

and, using again the squeeze theorem, we immediately obtain the first claimed asymp-
totic equivalence.

Now, if g does not lie in Dlgl, then YXg(x) tends to infinity as x — co. Using
(6.11), we then have

c+[igt)dt  c—olgl | [XTEg(t)at
Yg(x+a)  Zgx+a) Yg(x+a)

— 1 as x — 00,

which completes the proof. O

Remark 6.21. Let us show that the assumption on the function ¢ 4+ Xg cannot be
ignored in Proposition 6.20. Consider the functions f: R, — R and g: R, — R
defined by the equations

f(x) = X2_X1 (1—1—‘11 sinx) and g(x) = Af(x) for x > 0.
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It is clear that f lies in D and that g lies in Dy'. Moreover, it is not difficult to see
that the inequalities

—2XT2f(x) > x and = 2¥M*g'(x) > x

eventually hold, which shows that both f and g lie in K°. By the uniqueness theorem
it follows that f = Xg. However, we can readily see that the sequence

Lgin+1)
Ig(n)

does not converge, which shows that (6.30) does not hold when ¢ = 0. It is then
possible to show that the equivalence (6.31) does not hold either.

Now, to see that the last asymptotic equivalence in Proposition 6.20 need not hold
if g lies in Dy, take for instance

2 x—1
= —-——mmmm d Z = .
g(x) (x+1)(x+2) an g(x) x+1
We then have
. e+ [rglt)dt 9
X11_1}1;0 Tolxt a) —c+1n4. O

6.7 The Gregory summation formula revisited

Let g € €9, g € N, and let 1 < m < n be integers. Integrating both sides of identity
(3.8) on x € (0,1), we immediately obtain the following identity

n—1 q

| stwar = 3 gn0+ 3 6 gt - AT gm) +RE LMol (633)
m k=m j=1
where
1n-1 1
Rialgl = | ¥ oflglitide = | (gt~ filglit)d.  (634)
0 k=m 0

Identity (6.33) is nothing other than Gregory’s summation formula (see, e.g.,
[17,50,73]) with an integral form of the remainder. Note that, just like identity (2.10),
equation (6.33) is a pure identity in the sense that it holds without any restriction
on the form of g(x), except that here we asked g to be continuous.

Combining (6.14) with (6.34) we immediately see that this identity can be simply
written in terms of the generalized Binet function as

n—1

> J9tgl(k) + RY, ,[g] = 0. (6.35)

k=m
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Equivalently, if g lies in C°Ndom(Xg), using (6.19) and (6.34) we see that this identity
can also take the form

J9THEgl(n) — J9TH[£gl(m) + RY, . [g] = O. (6.36)

The next lemma, which is yet another straightforward consequence of Lemma 2.7,
provides an upper bound for [R% ,[gl| when g is g-convex or g-concave on [m, o).
Under this latter assumption, we can then use Gregory’s formula (6.33) as a quadra-
ture method for the numerical computation of the integral of g over the interval
[m,n).

Lemma 6.22. Let g lie in C°NK9 for some q € N and let m € N* be so that g
s q-convezx or (-concave on [m,c0). Then, for any integer n > m, we have

RE L[]l < GqlAdg(n)—Adg(m)l. (6.37)

Proof. This result is an immediate consequence of Lemma 2.7. Indeed, we can write

n—1 .1 n—1
R gl = |3 J P gt dt] < Gq |3 Adg()|,
k=m0 k=m
where the latter sum clearly telescopes to A9g(n) — A9g(m). O

Example 6.23. Let us compute numerically the integral

27
I = J Inxdx = 4.809854526737...

s

using Gregory’s summation formula (6.33) and the upper bound (6.37) of its remain-
der. Using an appropriate linear change of variable, we obtain

n T T
I = L g(t) dt, where ¢(t) = — In <nl (t—l)—i—n).
Taking n = 20 and q = 10 for instance, we obtain
19 10 . _
I~ Y glk)+) Gj(AI 1g(20) — A "1g(1)) = 4.800854526746 ...
k=1 j=1
and (6.37) gives |R%?20[g]| < 5.9 x 10711, O

In the following result, we give sufficient conditions on the function g for the
sequence q — Ry n[gl to converge to zero. Gregory’s formula (6.33) then takes a
special form.

Proposition 6.24. Let g € CONK>®, p € N, and let 1 < m < n be integers.
Suppose that, for every integer q > p, the function g s q-convez or q-concave
on [m,00). Suppose also that the sequence q — A9g(n) — Adg(m) s bounded.
Then we have

RY Mgl — 0 as q —n 09,
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or equivalently,

n n—1 00
[“owar = ¥ g9+ Y 6 ai gt —argim).
m k=m j=1

If g lies in €° Ndom(Zg), then the latter identity also takes the form
n > . .
fg(n) —£g(m) = j g(t)dt— Y G;(Atg(n) — A g(m)).
m =1

Proof. Under the assumptions of this proposition, the sequence q +— Rih nlg] con-
verges to zero by Lemma 6.22. (Recall that the sequence n — G,, converges to zero.)
The result then immediately follows from Gregory’s formula (6.33). The last part
then follows from identity (5.2). O

Example 6.25. Taking g(x) = Inx and m = p = 1 in Proposition 6.24, we obtain
the following identity

Inn! = 1-—-n+ n+1 1nn+i1n LH —iln w +
C 2 12 2n 24 3(n+1)2
which holds for any n € N*, O

A geometric interpretation of Gregory’s formula. For any g € €° and any
q € N, we let Py[gl: [1,00) — R denote the piecewise polynomial function whose
restriction to any interval [k,k 4 1), with k € N*, is the interpolating polynomial of
g with nodes at k,k+1,...,k+ g. That is,

Pqlgl(x) = Pqlgl(k,k+1,...,k+q;x), x € [k, k+1), (6.38)
or equivalently, using (2.9),

Pqlgl(x) = Pqlgl([x), [x] +1,..., [x] +q;x)

el

|
.I\/]@

I
o

(N ag(lx),  x>1.
j
In the following proposition, we provide an integral expression for the remainder

Rih,nlg] in terms of the function Pg4[g].

Proposition 6.26. For any g € €°, any q € N, and any integers 1 < m < n, we
have

Rinlgl = | (9(t)~Palgl(e) at (6.39)

Proof. Using (2.11) and (6.14) we then obtain

1 k+1 B
_jatiglk) = L pd* 1 [gl(t) dt = j (g(t) — Pylgl(1)) dt.

The result then follows from (6.35). O
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Proposition 6.26 immediately provides an interesting interpretation of Gregory’s
formula as a quadrature method. It actually shows that Gregory’s formula approx-
imates the integral of g over the interval [m,n) by replacing g with the piecewise
polynomial function ﬁq [gl. In particular, the remainder Rﬂn,n[g] reduces to zero
whenever g is a polynomial of degree less than or equal to q.

We also observe that Gregory’s formula reduces to the “left” rectangle method
(left Riemann sum) when q = 0, and the trapezoidal rule when q = 1. However, it
does not reduce to Simpson’s rule when q = 2. In fact, Gregory’s formula does not
correspond to a Newton-Cotes quadrature rule when q > 2.

Now, if g is g-convex or g-concave on [m, co), then for any k € {m, m+1,...,n—1}
and any t € [0,1), using Lemma 2.7 and identity (2.11) we obtain

0 < (=19 gl(t) = +(-1)9(g(k+1)—Pqlgl(k+1)),

where + stands for 1 or —1 according to whether g is g-convex or g-concave on
[m, co). This observation provides the following additional geometric interpretation.
It shows that, on the interval [k, k+ 1), the graph of g lies over or under that of P4[g]
according to whether +(—1)9 is 1 or —1. As an immediate consequence, the quantity
[J971[gl (k)| is precisely the surface area between both graphs over the interval [k, k+1)
while the remainder |[Ri, »[gl| is the surface area between both graphs over the interval
[m,n).

Example 6.27. With the function g(x) = Inx and the parameter q = 1 we associate
the piecewise linear function

1
Pilgl(x) = In[x] 4+ (x—[x])In (1 + LXJ) )
Since g is concave, for any integer n > 1 the graph of g on [1,n) lies over (or on) that
of P;[g], which is the polygonal line through the points (k,g(k)) for k = 1,...,n.
The value (see (6.36))

1
Rin[g] =J1)—Jm) = —InT(n) + (n— 2) Inn—n+1,
where J(x) is Binet’s function defined in (6.13), is then nothing other than the remain-
der in the trapezoidal rule on [1,n) with the integer nodes 1,...,n. Geometrically,
it measures the surface area between the graph of g and the polygonal line. O

Alternative integral form of the remainder. The following proposition yields
an alternative integral form of the remainder Rﬂl,n[g] when g lies in G497 for some
q € N*. Consider first the (kernel) function K n: R — R defined by the equation

Kq n(t) = qu n[('_t)i] fOrtER+.

! m,

It is not difficult to show that this function lies in €91 and has the compact support
[m,n+q—1J.
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Proposition 6.28. Suppose that g lies in G971 for someq € N* andletl <m <n
be integers. Then we have

n+q-—1
RY, [g] = J K9, . () D Hg(t) dt.

m,n
m

Proof. By Taylor’s theorem, the following identity

n+q-—1 (X _ t)

9(x) = Pq(x)+j ! patigy at

m q!
holds on the interval [m,n + q — 1] for some polynomial P, of degree less than or
equal to q. The result then follows from the definition of the remainder Rﬁn,n[g} and
the fact that R, »[Pq] = 0. O

Interestingly, if the function K, ,, does not change in sign (and we conjecture that
(—1)9 Kih, n is nonnegative), then by the mean value theorem for definite integrals the
remainder also takes the form

n+q-—1

Rinlgl = Dq“Q(E)J Kd, (1) dt

m
for some & € [m,n+q —1].
Remark 6.29. We observe that Jordan [50, p. 285] claimed that

“Rinlgl = Gqriln—m)Adrig(g)”

for some & € (m,n). However, taking for instance g(x) = x? and (q, m,n) = (0,1, 2),
we can see that this form of the remainder is not correct. Nevertheless, several
examples suggest that Jordan’s statement could possibly be corrected by assuming
that & € (m — 1,n—1). This question thus remains open. O

General Gregory’s formula and Euler-Maclaurin’s formula. The following
proposition provides Gregory’s formula in its general form using our integral expres-
sion for the remainder.

Proposition 6.30 (General form of Gregory’s formula). Let a € R, n,q € N, h > 0,
and f € C°([a,00)). Then we have

1 a+nh n—1

= f(t)dt =

hL (t) dt > fla+kh)
k=0

d j—1 j—1
+Y G ((AJ“;] f)(a+nh) — (Al f)(a)) +RI LY,
j=1
where
Ry L 0] J qu“ [t and f'(x) = f(a+ (x—1)h).
0

k=1
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Moreover, if f 1s q-convez or q-concave on [a,c0), then
R [fell < Gq [(Aff(a+nh) — (A} f)(a)].

Here, A, denotes the forward difference operator with step h > 0.

Proof. This formula can be obtained immediately from (6.33) and (6.34) replacing n
with n + 1 and then setting m = 1 and g(x) = f(a + (x — 1)h). The last part follows
from Lemma 6.22. O

The general Gregory formula is often compared with the corresponding Euler-
Maclaurin summation formula. We will use the latter in Chapter 8, so we now state
it in its general form (for background see, e.g., Apostol [8], Gel’fond [39], Lampret [62],
Mariconda and Tonolo [67], and Srivastava and Choi [93]).

Recall first that the Bernoulls numbers Bg, B1, Bo, ... are defined implicitly by
the single equation (see, e.g., Gel'fond [39, Chapter 4] and Graham et al. [41, p. 284])

m
> (™)By = 0™, meN. (6.40)
j=0

The first few values of B,, are: 1, —%, %, 0, —%, 0,.... Recall also that, for any n € N,

the nth degree Bernoulli polynomial B, (x) is defined by the equation
n
Bn(x) = Z (E) B X< for x € R.
k=0

Proposition 6.31 (Euler-Maclaurin’s formula). Let N € N*, f € €!([a,b]), and
h = (b—a)/N, for some real numbers a <b. Then we have

N b h
h ) fla+kh) = Jf(x)dx+§(f(a)+f(b))
k=0 @

N
+ hQJ By ({t})) f'(a+th) dt.
0

If, in addition, f € €29([a,b]) for some q € N*, then

N b h
h ) fla+kh) = Jf(x)dx+5(f(a)+f(b))
k=0

4 B, . )
+ > nI 22 (f2 N (6) — £ (@) + R,

where
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and

Bag| [°
RI< e oo [ 1600 ) ax.
(29)! Ja
Here f € C%([a,b]) means that f € CX(I) for some open interval 1 containing

[a, b].

Remark 6.32. We observe (to paraphrase Jordan [50, p. 285]) that Euler-Maclaurin’s
formula is more advantageous than Gregory’s formula if we deal with functions whose
derivatives are less complicated than their differences. However, there are functions
for which Euler-Maclaurin’s formula leads to divergent series while the corresponding
Gregory’s formula-based series (see Proposition 6.24) are convergent. For instance,
this may be due to the fact that, for any x > 0, the sequence n — D“% is unbounded
while the sequence n — A“% converges to zero. O

6.8 Generalized Euler’s constant

In this section, we introduce and discuss an analogue of Euler’s constant for any
function g lying in €° Ndom(X). We first consider a lemma.

Lemma 6.33. Let g lie in CONDP NKP for some p € N and let m € N*. Then
the sequence n +— Rh, 1[g] for n > m converges. Denoting its limit by Rh 9],
we have

RD lgl = JPHHZgl(m).

Proof. The proof is an immediate consequence of (6.36) and the generalized Stirling
formula (Theorem 6.13). O

Under the assumptions of Lemma 6.33, using (6.34), (6.35), and (6.39) we imme-
diately obtain the following identities

oo 1 1 o0
RP — p+1 dt = p+1 d
b g k_mL oPLIgl(1) dt Lgmpk lg)(t) dt
1
= | (2 lgl(t) — Zg(t)) dt
0
and .
RP Llgl = — ) JPHgl(k) = J (g(t) — Pplgl(t)) dt. (6.41)
k=m m

Moreover, if g is p-convex or p-concave on [m, co), the inequality (6.37) reduces to
RP Mgl = [JPHZgl(m)] < Gy |APg(m)], (6.42)

which is also an immediate consequence of Corollary 6.12 (where a tighter inequality
is also provided when p > 1).

Let us now provide a geometric interpretation of the remainder R%,Oo[g] when g is
p-convex or p-concave on [m, o). Suppose for instance that g is p-convex on [m, co).
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The interpretation of Gregory’s formula discussed in Section 6.7 shows that, on the
whole of the interval [m, co), the graph of g lies over or under that of ﬁp [g] according
to whether p is even or odd, and the remainder |R}, (gl is precisely the surface
area between both graphs. Interestingly, the fact that this surface area converges to
zero as m —y oo by (6.42) provides a direct interpretation of the restriction of the
generalized Stirling formula to integer values.

This interpretation is particularly visual when p = 0 or p = 1. Consider for
instance the case p = 1 and suppose that ¢ is concave on [m, o) (e.g., g(x) = lnx).
Then, the graph of g on [m, o) lies over (or on) the polygonal line through the points
(k, g(k)) for all integers k > m. The value |Rh, «[g]| is then the surface area between
the graph of g and this polygonal line. It is also the absolute value of the remainder
in the trapezoidal rule on [m, oo).

We are now able to introduce an analogue of Euler’s constant for any function g
lying in C° Ndom(X). We call it the generalized Euler constant.

Definition 6.34 (Generalized Euler’s constant). The generalized Euler constant
associated with a function g € C° Ndom(X) is the number

ylgl = —RY gl = —JP"zgl(1),
where p =1+ degg.
For instance, if g lies in €% N D% N K°, then using (6.33) we obtain

n—1 n
vlg) = lim (Z g(k)—Jl g(t) dt) (6.43)

k=1

0 K1
- (g(k) [ gt dt) ,
k=1 k

and this value represents the remainder in the “left” rectangle method on [1, co) with
the integer nodes k = 1,2, . ... Similarly, if g lies in C°N D! N X! and deg g = 0, then
we get

n—1 n
vlgl = lim (kzl g(k) — L g(t) dt + % g(n) — % 9(1)> (6.44)

OO k+1 1
= Z(g(M—L g(t)dt+2Ag(kJ),
k=1

and this value represents the remainder in the trapezoidal rule on [1,00) with the
integer nodes k =1,2,....

Thus defined, the number y[g] generalizes to any function g lying in C° Ndom(X)
not only the classical Euler constant y (obtained when g(x) = %) but also the gener-
alized Euler constant y[g] associated with a positive and strictly decreasing function
g as defined in (6.43) (see, e.g., Apostol [8] and Finch [37, Section 1.5.3]). Moreover,
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as we will see in Section 8.2, this number plays a central role in the Weierstrassian
form of g (which also justifies the choice m =1 in the definition of y[g]).

The definition of y[g] does not require g to be p-convex or p-concave on [1, c0).
However, if this latter condition holds, then by (6.42) we have the inequality

ylgll < GplAPg(1)| (6.45)

and by Corollary 6.12 the following tighter inequality also holds when p > 1

1
vigl < L (5] 147 g+ 1)~ avig() at (6.46)

We also provide and discuss finer bounds for y[g] in Appendix E (see Remark E.7).

Example 6.35. If g(x) = 1/x, then y[g] reduces to Euler’s constant vy, as expected.
Indeed, in this case we obtain

and its classical geometric interpretation. If g(x) = lnx, then the associated general-
ized Euler constant is

vlgl = —J2[Mnol(1) = —J(1) = —1—|—éln(27t) ~ —0.081

and we can see that it coincides with the associated asymptotic constant o[g] (see
Example 6.5). Moreover, using (6.44) we obtain the following formula

= 1 | 1 — 1
vlgl nlgxgo (nn!+n—1—(n+31)nn).
The value |y[gl] = —yIg] can then be interpreted as the surface area between the

graph of g on the unbounded interval [1,00) and the polygonal line through the
points (k, g(k)) for all integers k > 1. Moreover, Eq. (6.46) provides the following
inequality

N

5
lvlgll 1n4—1 ~ 0.14. O

A conversion formula between y[g] and o[g]. The following proposition, which
immediately follows from (6.18) and the identity

ylgl = —JPHzgl(1),

shows how the numbers y[g] and o[g] are related and provides an alternative way to
compute the value of y[g].
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Proposition 6.36. For any function g lying in C° Ndom(X), we have
p .
olg) = vlgl+)_ G;A g(1),
j=1

where p =1+ degg.

An integral form of y[g]. The following proposition shows that the classical integral
representation of the Euler constant

*© /1 1

v [ Y)a
1 \[t) ot

can be generalized to the constant y[g] for any function g lying in C° N dom(X).

Proposition 6.37. For any g € C°NDP NKP, where p =1+ degg, we have

00 P
vlgl = L (ZGjAjg(LtJ)—g(t)) dt.
j=0

In particular, when deg g = —1, we have

vlgl = f(g(LtJ) —g(t)) dt.

Proof. Using (6.16) and (6.41), we obtain

o0 oo P k+1
vigl = S ek = 3 | Y 6aigo - [ g,
k=1 k=1 \j=0 k
which immediately provides the claimed formula. U

The principal indefinite sum of the generalized Binet function. If g lies in
CONDP NKP for some p € N, then the function JPT*[Zg] lies in DG by Theorem 6.13,
and hence so does

AJPHHZgl = JPHig].

If, in addition, JP*1[Zg] lies in K°, then by the uniqueness Theorem 3.1 we have that
TPl = JPTHEIgl - JPTHZgI(1).
Thus, if p = 1+ deg g, then we obtain the identity
IP*gl = JPHZgl +vIgl. (6.47)

Now, suppose that we wish to show that a given function f: Ry — R satisfies the
equation f = JPT1[Lg] for some function g lying in C°NDP NKP, with p = 1 +degg.
Using the uniqueness theorem with identity (6.47), we see that it is then enough to
show that Af = JP*1[g], f(1) = —vlg], and f € K°.
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Example 6.38. Let f: R, — R be defined by the equation f(x) = {(x) — lnx for
x > 0. To see that f = J1[\], it is enough to observe that f lies in X°, that f(1) = —y,
and that

X X
is precisely the function J'[g](x) when g(x) = 1/x. O

Example 6.39. Binet established the following integral representation (see, e.g.,
Sasvari [89])

00 1 1 1 e—xt
FPlnoll(x) = J(x) = L (etl_t+2) g

Eqg. (6.47) then provides a possible (though not immediate) proof of this identity. ¢



76



Chapter 7

Derivatives of multiple
log I'-type functions

In this chapter, we discuss the higher order differentiability properties of £g when g
lies in " N DP N K=2x{P."} for any p,r € N. In particular, we show the fundamental
fact that £g also lies in C” and that the sequence n — DT} [g] converges uniformly
on any bounded subinterval of R, to D"Xg.

We also show that the functions (£g)(") and Zg(™) differ by a constant and we
investigate some properties of these functions, including asymptotic behaviors and an
analogue of Euler’s series representation of the constant y. We present and discuss a
procedure, that we call the “elevator” method, to compute Lg by first evaluating Zg(™).
Finally, we provide an alternative uniqueness result for higher order differentiable
solutions to the equation Af = g.

7.1 Differentiability of multiple log I'-type functions

In this first section we investigate the higher order differentiability of the function Xg
when g is of class C" for some r € N. We start with the following preliminary, but
very important result.

Proposition 7.1. If g lies in C" N DP N X=2xP:7} for some 1,p € N, then the
function Lg lies in €™ N DPFL N gmaxip.r},

Proof. If g lies in " N DP N X™2x{P:7} for some r,p € N, then clearly it also lies in
er N pmax{p.r} n Kmax{p.v} By Proposition 5.6, £g must lie in DP+! 0 Kmax{p.r} Let
us now show that it also lies in C".

We first observe that g(™) lies in €0 N DP~)+ N KP—")+  This is clear if r < p
by Propositions 4.12. If r > p, then we first see that g(P) lies in €™ P N D° N K"~ P,
and hence also in X° N XK. Using Proposition 4.16(b) repeatedly, we then see that
g'™) lies in N D~ NXKPC.

7
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By Proposition 5.18, £g(") must lie in C° N DP-")++1 1 g (P=")+  Hence, there
exists F € @ such that F(") = Zg(™). By Proposition 4.12, F must lie in J™a*{P.7},
Now, we also have

D'AF = AF") = Azgl") = g7

)

which shows that A(F + P) = g for some polynomial P of degree at most r. By
Corollary 4.6 we have that F + P lies in K™**{P"}, But then, by the uniqueness
Theorem 3.1 we must have F4+ P = £g + ¢ for some ¢ € R. Hence Zg liesin C". O

Remark 7.2. If g lies in €"NDP NKP for some integers 0 < r < p, then the function
g lies in C" by Proposition 7.1. Interestingly, this result can also be established
very easily using the following argument. Let n € N be so that Xg is p-convex or
p-concave on I, = (n,oc0). By Lemma 2.6(a), the function g lies in CP~1(I,,) and
hence also in C"(I,,). Using (5.3), we immediately obtain that Xg lies in €. O

We now present the following important and very surprising result. It shows
that Proposition 7.1 no longer holds when r > p if we ask g to lie in XP instead of
Kmax{p,r} - Since the proof is somewhat technical, we defer it to Appendix F.

Proposition 7.3. For every p € N, there ezists a function g lying in CP1 N
DP N KP for which £g does not lie in CP'L. Thus, the operator £ does not
always preserve differentiability when the order of differentiability exceeds that
of convezity.

Proof. See Appendix F. O

The next theorem is the central result of this section. In this theorem, we re-
call the fundamental result given in Proposition 7.1 and we show that, under the
same assumptions, the sequence n ~ D"fh[g] converges uniformly on any bounded
subinterval of R, to D"Xg. We first consider a technical lemma.

Lemma 7.4. Let g lie in C"NDPNKP for some integers 0 < v < p. Then, for any
n € N the function pﬂ“[}:g] lies in C". Moreover, the sequence n Drpffl[Zg]
converges uniformly on any bounded subset of R, to zero.

Proof. By Proposition 7.1, we have that Zg lies in €". Using (1.7) it is then clear
that, for any n € N, the function pRH[Zg] lies in C.

Let us now show the second part of the lemma. Negating g if necessary, we may
assume that it lies in K? . In this case, D"Xg must lie in X} " by Proposition 4.12. Let
1n > p be an integer so that g is p-concave on [n, c0). Using Proposition 2.1 repeatedly,
we can see that there exist p —r+ 1 pairwise distinct points &g,..., &5, € (0,p)
such that

DiPp(Zgl(n,...,n+pin+x) = Pp[D'Igln+&g,...,n+ & sn+x).
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Let us now fix x > 0. Using (2.11) and then (2.2) and (2.3), we obtain

p—r

D'pR M Egl(x) = D'Ign+&y,...,n+&r n+x [[(x—&
i=0
p—r
= An [[(x—&),
i=1

fx#& fori=0,...,p—r, and D pR " [Zg](x) = 0, otherwise, where

An = D'Zgn+&F,...,n+ & ,n+x]—D'Zgn+&5,...,n+ & ]

Now, on the one hand, we clearly have

p—r

[Ix—er < 2

i=1

where ¢y = max{p, [x]}. On the other hand, using Lemma 2.5 (with the fact that
D"Zg lies in X} ") and then (2.8), we obtain

[An] < |ID'XZgln+4cyx,...,n+cx+p—1—D'Zgn—p+T1,...,n]|

1
= oo |APTDTEg(n+cx) —APT'D'Ig(n—p + 1)
1 cx—1
= o Z |AP7"D g(n +j)I.
T j=—ptr

Thus, for any bounded subinterval E of R, , we obtain the inequality

CP*T Csup E—1

sup [D7pR M Zgl(x)| < B 3 AP TDTg(n+j)l.

—7)!
x€E (P T‘). j=—pr

But the latter sum converges to zero as n —y oo since D"g lies in DP~" N KP~" by
Proposition 4.12. This completes the proof of the lemma. O

Theorem 7.5 (Higher order differentiability of multiple log I'-type functions). Let g
lie in C" N DP N K=ax{P.T) for some 1,p € N. The following assertions hold.

(a) Lg lies in C" N DP+L N gmax{p.r}

(b) The sequence n — D"fh[g] converges uniformly on any bounded subset of
R, to D"%g.

Proof. Assertion (a) immediately follows from Proposition 7.1. When r < p, assertion
(b) immediately follows from Lemma 7.4 and identity (5.4). Let us now assume that
T > p. Using (5.4) and then (1.7) and (5.3) we obtain

n—1
D'fP[gl(x) = D'Ig(x)—D'Igx+n) = —> ¢ (x+k).
k=0
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By Proposition 4.12, we have that g(P) lies in €P N D% N K" P, and hence also
in K% N K!. Using Proposition 4.16(b) repeatedly, we then see that g(*) lies in
0 NDtNKO Thus, we can apply Theorem 3.12 to the function g(*), with f =
D"Lg. Since f lies in €° N D® N K° by assertion (a) and Proposition 4.12, it follows
from Theorem 3.12 that the sequence n — DTfh[g] converges uniformly on R, to
f—f(oo) =f=D"Xg. O

Example 7.6. The function g(x) = Inx clearly lies in €* N D! N K*®. Using Theo-
rem 7.5, we now see that the function Zg(x) = InT'(x) lies in C*ND2NK>®. Moreover,
for any r € N*, we have

P, 1(x) = D"Inl(x) = lim D"f}[ln](x)

n—oo
n—1 1
— : r—1 _1\7 _ 1 -
T}g'%o (O Inn+ (—=1)"(r—1)! kZ:O (x—i—k)T)'

If r =1, then we obtain

n—1
Y(x) = lim <1nn—ZXik>.

k=0

If r > 2, then we get (compare with, e.g., Srivastava and Choi [93, p. 33])

Yro1(x) = (=1)"(r— 1) (r,x),

where s — ((s,x) is the Hurwitz zeta function (see Example 1.7). O

7.2 Some properties of the derivatives

In this section, we investigate the functions (Zg)(") and Zg(") and some of their
properties. We also show how the asymptotic behaviors of these functions can be
analyzed from results of Chapter 6, including the generalized Stirling formula. Finally,
we provide a series representation of the asymptotic constant o[g] as an analogue of
Euler’s series representation of .

In the next proposition, we essentially establish the fact that the functions (Zg)(™
and Zg(") are equal up to an additive constant. This result will have several important
consequences in this and the next chapters.

Proposition 7.7. Let g lie in €™ N DP N K=2xP} for some p € N and r € N*.
Then g lies in O NDP—+ N KPP+ Moreover, for any x > 0 we have

(£9)7(x) —2¢" (%) = (£g)7(1) = "V (1) —olg"]. (7.1)

If r > p, then
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Proof. As already observed in the proof of Proposition 7.1, the first claim follows from

Propositions 4.12 and 4.16(b). Moreover, we have that Xg lies in C"NDP+InFmax{p.m},

Let us now prove (7.1). By Proposition 4.12, the function ¢; = (£g)(™) is a solution

in K(P~7)+ to the equation A@ = g(*). By the existence Theorem 3.6, the function

@2 = Zg'") is also a solution in X(P~")+. Thus, by the uniqueness Theorem 3.1, we

must have (£g)(") —Xg(") = ¢ for some ¢ € R, and hence we also have (Zg)(")(1) =c.
Now, for any x > 0, using (6.11) we then get

x+1

g ) —olg] = ¢ V0| g

X

Evaluating the latter integral, we then obtain

g" V(W) —olg™ = et g M)~ (g x+ 1) + (£g) V()
¢+ 9" —AZg) " (1)
9" ()~ (A2g) " (1)
=
which proves (7.1). Finally, if r > p, then we have that g(™*) lies in €1 ND°NK* and

that g(™) lies in € ND~*NXK° by Proposition 4.16(b). The last part of the statement
then follows from applying Proposition 6.14 to the function g(™). U

Example 7.8. The function g(x) = % lies in €*° N D N K> and all its derivatives
lie in K°. By Theorem 7.5, the function

0]

Ig(x) = Z(kj—l_x—&l—k) = Hyx-1 = ¥(x) +vy

k=0

lies in C*NDINK>®. Moreover, the series can be differentiated term by term infinitely
many times and hence, for any r € N*, we have

Mg = S (gt T _
(£g)M(x) = kZ:O( K Tl B, (%).
By Proposition 7.7, we also have
= 1
) — _(_ _ _
olg™ =~ (DT Y
k=1
= )" r=DHrgr+1)—1),
where s — ((s) is the Riemann zeta function. O

In the next proposition we show the remarkable fact that the asymptotic equiva-
lence (6.31) still holds if we differentiate both sides.
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Proposition 7.9. Let g lie in C" N DP N K™XP} for some p € N and r € N¥,
and let a > 0. When D"Xg vanishes at infinity, we also assume that

D'Zg(n+1) ~ D"Zg(n) as n —y 0o.

Then we have
x+1

D"Zg(x+a) ~ D;J Igt)dt = gV (x) as x — oo.

X

Proof. By Proposition 7.7, we have that g(™) lies in €°NDP~)+NK P+ Moreover,
for any x > 0 we have

D'Ig(x+a) = c+ 29" (x+a)

and, using (6.11),

x+1
= c+J g (t) dt,

where ¢ = g™V (1) — o[g(")]. The result then immediately follows from applying
Proposition 6.20 to the function g(™. O

Example 7.10. Applying Proposition 7.9 to the function g(x) =1nx, for any a > 0
we obtain the equivalences

InT(x+a) ~ xlnx, P(x+a) ~ lnx as x — 00,

and for any v € N,

v!

T as x — 00. O
X

Yyialx+a) ~ (=1)Y

In the next two propositions, we mainly investigate how the convergence results
in (6.4) and (6.21) are modified when the function g is replaced with one of its higher
order derivatives. The second proposition can be regarded as the “integrated” version
of the first one, and hence it naturally involves the generalized Binet function.

Proposition 7.11. Let g lie in €" N DP N K™xP:7} for some p € N and v € N*,
and let a > 0. The following assertions hold.

(a) g lies in Rg_r” and both £g'™) and (£g)") lie in ng_r)*H.

(b) For any q € N, the function x — pQH[Zg](a) lies in C" and we have

Dlpd™[Zgl(a) = pd™t[Eg](a).

(c) We have that pP """ [£g("](a) = 0 and DZpl [Lg](a) — 0 as x — co.
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Proof. By Proposition 7.7, the function g(™) lies in € N DP~—")+ NP+ This
immediately proves assertion (a). Now, using (1.7) and then (7.1) we get

q
DIpd*Zgl(a) = Zg(x+a)— )= () a1
j=1

= p{zg"(a),

which proves assertion (b). Assertion (c) follows from assertions (a) and (b) and the
fact that R~ ¢ R+, O

Proposition 7.12. Let g lie in C" N DP N K™axP1} for some p € N and r € N*.
The following assertions hold.

(a) For any q € N, the function J971[Lg] lies in C" and we have
DrIq+l[Zg] _ ]q+1[zg(r)}.
In particular, we have o[g!™] = —DTJ*[Zg](1).

(b) We have that JP~")++1[£g(M](x ) — 0 and D"JPH[Zg](x) — 0 as x — 0. In
particular, if v > p, then (£g9)™) — 0 as x — oco.

(c) We have

1
DEJ PP Zgl(t) dt = J DIpP*t[gl(t) dt.
0

Proof. Using (6.18) and (7.1), we get

q
D' Egl) = Zg”(x) —olg ™~ | g t)de+ Y 6 AT g
1 P

= J9zgMI(x),
which proves assertion (a). Now, setting ¢ = p in these equations we obtain

P
DPRE) = JP g+ Y GA g (),
j=(p—7)++1

Since g(") lies in €° N D®P~)+ N KPP+ this latter expression vanishes at infinity.
This proves assertion (b). Finally, using Proposition 7.11 and assertion (a) we get

1 1
JDLpi“[lg](t) at = jpzﬂmmut) at = — P 5g M) (x)
0 0
1
— DPHsgl(x) = D;j o2 1[Zg](t) dt,
0

which proves assertion (c). O
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Assertion (c) of Proposition 7.11 reveals a very important fact. It shows that the
convergence result in (6.4) still holds if we replace g with g(™) and p with (p — 7).
But it also says that this new result can also be obtained by differentiating r times
both sides of (6.4) and then removing the terms that vanish at infinity.

Similarly, assertion (b) of Proposition 7.12 shows that this property also applies
to the generalized Stirling formula (6.21).

Example 7.13. The function g(x) = Inx lies in € N D! N K™ and its derivative
g'(x) = X lies in €° N DN K. For any a > 0, the limit in (6.4) reduces to

InT(x+a)—InT(x) —alnx — 0 as X — 00.
If we replace g with g’ and set p =0 in (6.4), we get
P(x+a)—YP(x) — 0 as x — oo.

However, this latter limit can also be obtained by differentiating both sides of the
previous limit and then removing the term (—<) that vanishes at infinity.

Now, applying the generalized Stirling formula (6.21) to the function g(x) = Inx,
we clearly retrieve the classical Stirling formula

1 1
lnr(x)—zln(27't)+x—<X—2>1nx — 0 as X — 0o.

Proceeding similarly as above, we then obtain
P(x)—lnx — 0 as x — 00,

which is actually the analogue of Stirling’s formula for the digamma function. O

Remark 7.14. To emphasize the similarities between Propositions 7.11 and 7.12, we
could for instance extend our formalism a bit further as follows. For any p € N and
any S € {N,R}, let J¥ denote the set of continuous functions g: R — R having the
asymptotic property that

JPlgl(t) — O as t =g 00.

This new definition enables one to formalize some results more easily. For instance,
using (6.17) we clearly obtain that

NDE = 2N DL

and this identity could be used to establish assertion (b) of Proposition 7.12 from
assertion (a). To give another example, we can see that (6.22) actually means that

CONDPNKP C Jp.

Note also that the generalized Stirling formula simply states that Xg lies in 3%“
whenever g lies in €° N DP N KP. O
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Taylor series expansion of Xg. Suppose that g lies in C*° N DP N K> for some
p € N. We know from Proposition 7.12 that

olg™] = —DM'zgl(1), keN.

Thus, the exponential generating function (see, e.g., Graham et al. [41, Chapter 7])
for the sequence n — o[g(™)] is defined by the equation

o k
> olg™] % = —JUZgl(x+1) (7.2)
k=1 ’

= G[g]+J g(t)dt —Zg(x+1).
1

Denoting this exponential generating function by egf.[gl(x), the previous equation
reduces to
egfslgl(x) = —J'Zgl(x+1).

If the function J![Zg] is real analytic at 1, then the series in (7.2) converges in some
neighborhood of x = 0. Similarly, if the function Xg is real analytic at 1, then the
following Taylor series expansion

xk

Tglx+1) = ];(29)“‘)(1) o (73)

holds in some neighborhood of x = 0, where the numbers (£g)) (1) for k € N* can
also be computed through (7.1).

Example 7.15. Consider again the functions g(x) = Inx and Zg(x) = InT(x). We
know from Example 7.6 that

DInl(1) = P(1) = lim <ln“—i1> -y

n—»00 k
k=1

and that for any integer k > 2
D*Inl(1) = $ia(1) = (—1)* (k—1)(K).

We then obtain the following Taylor series expansion
[o¢]
k
InT(x+1) = —yx—l—l;(—l)qu)xk, Ix| < 1.

The values of the sequence n +— o[g(™] can be obtained using (7.1) or (7.2). We get

olg = —1+ (), olg) = v,

and for any integer k > 2
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Analogues of Euler’s series representation of y. Integrating both sides of (7.3)
n (0,1) (assuming that the series can be integrated term by term), we obtain the
identity

_ v (k) 1
= 3290 gy (7.4)

Similarly, integrating both sides of (7.2) on (0, 1) (assuming again that the series can
be integrated term by term), we obtain the identity

s 2
3 ol o - | e-vea (7.5)

Taking for instance g(x) = | in (7.4), we immediately retrieve Euler’s series repre-

sentation of y (see, e.g., Srivastava and Choi [93, p. 272])
i L Gk
k=2 k ‘

This formula can also be obtained taking g(x) = % in (7.5) and using the straightfor-
ward identity

olg™] = (—1)*K! (C(k+ 1)—]1), ke N

Considering different functions g(x) in (7.4) and (7.5) enables one to derive various
interesting identities. A few applications are given in the following example.

Example 7.16. Taking g(x) = P(x) in (7.5) and using the straightforward identity

olg™] = ofpi] = (1) (k—1)(k—1)1¢(k) keN, k=2

we obtain
— . k—1 B
kgzz( 1) k(k+1) ((k) = 2—In(2n).

Similarly, taking g(x) =1lnx and then g(x) =InT'(x) in (7.4) and (7.5) we obtain the
identities

- 1 1
g k+1)C(k) = Sy—1+;(m,
S K 1 11
kgz(*l) mqk) = §+6yf2lnA,
— .k k-1 5 1
é(—l) mdk) = Z—Zln(27'[)—31nA,

where A is Glaisher-Kinkelin’s constant; see also Srivastava and Choi [93, Section

3.4]. %
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7.3 Finding solutions from derivatives

Given r € N* and a function g € C7, a solution f € C" to the equation Af = g can
sometimes be found more easily by first searching for an appropriate solution ¢ € C°
to the equation A = g(") and then calculating f as an rth antiderivative of .

Let us first examine a very simple example to illustrate to which extent this
approach can be easily and usefully applied.

Example 7.17. Let g: R, — R be defined by the equation
X
g(x) = J Intdt for x > 0.
1

Suppose that we search for a simple expression for the indefinite sum Xg. We can
apply Proposition 7.7 and observe that g’ lies in € N D! NK>® and hence that g lies
in €®° N D2 NK>®. Moreover, we have

(Zg)'(x) = ¢+ Zg'(x) = c+1InT(x)

for some ¢ € R. Thus, we obtain

X

Yg(x) = c(x—1)+ L InT(t) dt.

To find the value of c, we then observe that

2
0 = ¢g(1) = AZg(1) = C+J'1 InT(t) dt

and hence c =1 — %1n(27[) (see Example 6.5). Alternatively, this value can also be
obtained directly from (7.1); we have

¢ = g(1)—olg'l = —olg'l = 1—%111(271).

Thus, this approach amounts to first searching for a simple expression for £g’, and
then computing ~g using an antiderivative of Zg'.
Finally, we get

Tg(x) = —1+ (1 - ;ln(27r)> X+ 1_2(x),

where 1p_, is the polygamma function P_5(x) = fg InT(t) dt. O

The approach described in Example 7.17 is rather simple and can sometimes be
very efficient. We will refer to this technique as the elevator method. In very basic
terms, to find Xg one proceeds as follows.

Step 1. We take the elevator, go down from the ground floor to the rth
basement level, and get the function £g") easily.
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Step 2. We go back to the ground floor by converting the latter function
into the function sought Lg using an rth antideriwative.

=9 f=1g
\: T
— g(r) — © = Zg(T]

To our knowledge, this trick was investigated thoroughly by Krull [55] and then
by Dufresnoy and Pisot [34].

In the next theorem we provide a general result based on this idea. This result
is actually very general: it applies to any function g € C", even if Xg is not defined
(e-g. g(x) =2%).

We first observe that if ¢ € €0 is a solution to the equation A@ = g™, then the
map

x+1
X J e(t)dt— gV (x)
X
has a zero derivative and hence it is constant on R,. In particular, it has a finite
right limit at x = 0.

Theorem 7.18 (The elevator method). Letr € N*, a >0, g € C", and let ¢: R, —
R be a continuous solution to the equation A@ = g'™). Then there exists a
solution f € C" to the equation Af = g such that f") = @ if and only if

a+1
J pt)dt = g Y(a). (7.6)

a

If any of these equivalent conditions holds, then f is uniquely determined (up to
an additive constant) by

where, fork=1,...,1—1,

) . a+1 _ f\T—j—k
‘?;(Q(Hk_n(a)_L (a?;ljt)k);(p(t)dt). (7.8)

r—k—1
Ck =
j=0

Proof. Condition (7.6) is clearly necessary. Indeed, we have

a+1
J et)dt = f" V(a4+1)—f"Y(a) = g Y(a).
a

Let us show that it is sufficient. Since ¢ is continuous, there exists f € C" such
that (") = ¢. Taylor’s theorem then provides the expansion formula (7.7) with
arbitrary parameters ¢, = f(*)(a) for k =1,...,7—1. Now we need to determine the
parameters cq,...,ck for f to be a solution to the equation Af = g. To this extent,
we need the following claim.
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Claim. The function f satisfies the equation Af = g if and only if f(*) satisfies the
equation Af(") = g™ and Af0)(a) = g0)(a) forj=0,...,r—1.

Proof of the claim. The condition is clearly necessary. To see that it is sufficient,
we simply show by decreasing induction on j that Af0) = gU). Clearly, this is true
for j = r. Suppose that it is true for some integer j satisfying 1 < j < r. For any
x > 0 we have

AtV (x) —Af0"Y(a) = J A0 (t)dt = J gV (t) dt

a a

= g =g (a) = ¢I V() — AFTV(a),
which shows that the result still holds for j — 1. O

By the claim, f satisfies the equation Af = g if and only if Af0)(a) = gU)(a) for
j=0,...,7—1. When j =r— 1, the latter condition is nothing other than condition
(7.6) and hence it is satisfied. Applying Taylor’s theorem to ), we obtain

r—j—1 1

. . . a+1 (a+1_t)r—j—l
fO(a+1)=f(a) = 7f(]+k)(a)+J' _r- 7
kgl k! a (r—j—1)!

@(t) dt,

and hence we see that the remaining r — 1 conditions are
r—j—1 1 '
EC]'_H( = dj, j=0,...,7—2,

k=1

where

a+1 _yr—j—1
o ) () (a+1-t)7
4 = 97l J r—j—1)

ce = %), k=1,...,r—1.

(1) dt, j=0,...,71—2,

It is not difficult to see that these r—1 conditions form a consistent triangular system
of r — 1 linear equations in the r — 1 unknowns cy,...,cy—;. This establishes the
uniqueness of f up to an additive constant.

Let us now show that formula (7.8) holds. For k =1,...,v— 1, we have

—k—
j=0

Replacing i with i —j — k + 1 and then permuting the resulting sums, the latter
expression reduces to

1 1 r—j—k

—k—

B; 1

E - 7 Citj+k—1-
j! il

j=0 i=1

T T

B.
T'J djyx—1 =

r—k—1 r—1 r—1 i—k
=0

B 1 . Ci i—k+1\ p.
25 2 i T S 500

I
j > 55k
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that is, using (6.40),

r—1 s
i ik
—— 0" = .
i I
= (i—-k+1)
This completes the proof of the theorem. O

Adding an appropriate constant to ¢ if necessary in Theorem 7.18, we can always
assume that condition (7.6) holds. More precisely, the function @* = ¢ + C, where

c = g“-”(a)—j o(t) dt,

satisfies
a+1
| ermer = g .

Example 7.19. Let us see how we can apply Theorem 7.18 to somewhat generalize
Example 7.17. Let g € C°, let G € C! be defined by the equation

X
G(x) = J g(t) dt for x > 0,
1

and let f € C° be any solution to the equation Af = g. To find a solution F to the
equation AF = G such that F/ = f, we just need to apply Theorem 7.18 to the function
G with r =1 and a = 1. Defining the function

2
* = f—J f(t) dt,
1
we then obtain that the function F € €' defined by the equation
X X 2
F(x) = J Y (t)dt = J f(t) dt—(x—l)J f(t) dt for x > 0,
1 1 1

is the unique (up to an additive constant) solution to the equation AF = G such that
F’ = f. For similar results, see Krull [55, p. 254] and Kuczma [58, Section 2]. %

The next corollary particularizes the elevator method when the function g lies
in C" N DP N K™2*P7} for some p € N and v € N*. We omit the proof, since it
immediately follows from Theorem 7.5, Proposition 7.7, and Theorem 7.18.

Corollary 7.20 (The elevator method). Let g lie in €™ N DP N K= P.T) for some
p €N and r € N*. Then Zg lies in C" N DP+ N K=axP.7} and we have

(£9)" —£g'™ = ¢ V(1) —alg'l.

(This latter value reduces to — 3 3, g™ (k) if r > p.) Moreover, for any a > 0,
we have
g = fqa—fa(1),
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where fq, € C7 15 defined by

(£g)!"(t) dt

r—1 _ q\k X _ )1
) = Fow S (G20
k=1 ’ ’

and, fork=1,...,vr—1,

r—k—1 a+1 r—i—k
- Bi (quknq_ [ et 1=t ) >
ol = 35 (o0 - [ BN g ar).

Corollary 7.20 has an important practical value. It provides an explicit integral
expression for £g from an explicit expression for £g(™). Setting a = 1 in this result,
we simply obtain

— k! 1 (r—1)!
with, fork=1,...,r—1,
r—k—1 2 ik
Bi (gt J ot (™)
= — 1)—| ——F (£ t)dt ).
cx ;} i (9 W~ | =g F97 0

The following three examples illustrate the use of Corollary 7.20. In the first one, we
revisit Example 7.17.

Example 7.21. The function

g(x) = J Intdt
1

lies in C*® N D2 N K>®. Choosing r =1 and a = 1 in Corollary 7.20, we get

g'(x) = Inx,
Ig'(x) = InT(x),
(Zg)'(x) = InT(x)+1—3n(2m),
and i}
Tg(x) = (1 — ;ln(27[)) (x—1)+ L InT(t) dt. ¢

Example 7.22. The function
X
g(x) = J (x —t)Intdt
0
lies in C*ND3NK>. Choosing r = 2 and a = 0 (as a limiting value) in Corollary 7.20,
we get
9"(x) = Inx,
2g"(x) InT(x),
(Zg)"(x) = InT(x)—

£ In(2m),
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and
X

Ig(x) = —(InA)x— i In(27) x2 +J (x —t)InT(t) dt,
0
where A is Glaisher-Kinkelin’s constant and the integral is the polygamma function
P _3(x). (Here we use the identity {_3(1) =InA + %1n(27‘[).)
We can also investigate the asymptotic properties of Xg using our results. For
instance, using the generalized Stirling formula (6.21), we also obtain the following
asymptotic behavior of Xg

1 3 2 L 5
Zg(x)+ = (22x° — 27x* + 9x) T (8x —15)Inx

1 5 1 5 ¢(3)
—E(erl) ln(x+1)+@(x+2) In(x+2) — e as x = 00. O
Example 7.23. The function g(x) = arctan(x) lies in C*ND!NK>. Choosing r = 1

and a =0 (as a limiting value) in Corollary 7.20, we get (see also Example 5.10)

g'(x) = P+ = —Jx+1)7H,
Ig'(x) = JP(1+1i)—Tp(x+1),
(Zg)'(x) = c—Tp(x+1),

for some ¢ € R, and hence
Yg(x) = c(x—=1)+TInTM(14+1) —TInl(x +1).

Applying the operator A to both sides of this identity and then setting x = 1, we
obtain ¢ = 7. Thus, we have

Tg(x) = g(x— 1)+ 3InT(1+1) — FInT(x +1).

Some properties of g can be investigated. For instance, using Corollary 6.12 together
with the identity

x 1 5 w1
arctan(t) dt = xarctan(x) — 5 In(x* +1) — 1 + 5 In2,
1

we obtain the inequality

’Zg(x) — (x— ;) arctan(x) + % In(x*+1)—1+ % —JInT(14+1)

1
< -carctan ———
2 x2+x+1

and hence the left side approaches zero as x — oo, which provides the asymptotic
behavior of the function Zg for large values of its argument. O
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7.4 An alternative uniqueness result

The following theorem provides a uniqueness result for higher order differentiable
solutions to the equation Af = g. These solutions can be computed from their
derivatives using Theorem 7.18. We first state a surprising and useful fact.

Fact 7.24. A periodic function w: R, — R s constant if and only if it lies in
XKO. In particular, if @1, @2: R, — R are two solutions to the equation Ag = g
such that @1 — @y lies in KO, then @1 — @4 is constant.

Theorem 7.25 (Uniqueness). Let v € N* and g € C", and assume that there exists
@ € € such that Ap =g and @™ € RY . Then, the following assertions hold.

(a) For each x >0, the series Y g™ (x + k) converges and we have

oo

o) = =3 ¢"(x+k).
k=0

(b) For any f € C"NXK"! such that Af = g, we have f =c+ ¢ for some c € R.

Proof. Assertion (a) follows immediately from (3.2). Now, let f € €"NXK" ! be such
that Af = g. By Lemma 2.6(c), f") must lie in K. Setting w = f — @ and using
(3.2) again, we then obtain
wx) = %) —eM(x) = lim f(x+n),
n—o00

which shows that w (") also lies in X !. By Lemma 2.6(d), w lies in X" ' ¢ X° and,
since it is 1-periodic, it must be constant by Fact 7.24. This proves assertion (b). O

Example 7.26. The assumptions of Theorem 7.25 hold if g(x) = Inx, @(x) = InT'(x),
and v = 2. It then follows that all solutions to the equation Af = g that lie in €2 NXK?
are of the form f(x) = ¢ + InT'(x), where ¢ € R. We thus easily retrieve Bohr-
Mollerup’s theorem with the additional assumption that f lies in C2. It is remarkable
that this latter result can be obtained here from a very elementary theorem that relies
only on Lemma 2.6 and Fact 7.24. O
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Chapter 8

Further results

As discussed in the first chapter, the main objective of our work is to generalize
Krull-Webster’s theory to multiple log I'-type functions and explore the properties of
these functions that are analogues of classical properties of the gamma function.

In the previous chapters, we have presented and discussed several results related
to these functions, including their differentiation and integration properties as well
as important results on their asymptotic behaviors.

We are now in a position to explore further properties of multiple log I'-type func-
tions. More precisely, in this chapter we provide for these functions analogues of
Euler’s infinite product, Euler’s reflection formula, Gauss’ multiplication for-
mula, Gautschi’s inequality, Raabe’s formula, Wallis’s product formula, Web-
ster’s functional equation, and Weierstrass’ infinite product for the gamma func-
tion. We also discuss analogues of Fontana-Mascheroni’s series and Gauss’ digam-
ma theorem and provide a Gregory’s formula-based series representation, a general
asymptotic expansion formula, and a few related results.

8.1 Eulerian form

Let g lie in DP N XP for some p € N. As we already observed in Chapter 1, the
representation of £g as the pointwise limit of the sequence n +— fh[g] is the analogue
of Gauss’ limit for the gamma function. Using identity (3.8), we immediately see that
this form of Xg can be translated into a series, namely

Ig(x) = fIlglx) = > P gllx),  x>0. (8.1)
k=1

It is a simple exercise to see that, when g(x) = Inx and p = 1, this latter formula
reduces to the following series representation of the log-gamma function

o0

InT(x) = —lnfo(1n(x+k)flnk—xln(1+%)). (8.2)
k=1

95
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Its multiplicative version is nothing other than the classical Eulerian form (or Euler’s
product form) of the gamma function (see, e.g., Srivastava and Choi [93, p. 3]). We
recall this form in the following proposition.

Proposition 8.1 (Eulerian form of the gamma function). The following identity
holds

1 S (1+1/k)
= = 0.
xlj trxk T

We thus see that, for any multiple log I'-type function, the series representation
(8.1) is the analogue of the Eulerian form of the gamma function in the additive no-
tation. Moreover, we have shown in Theorem 7.5 that this series can be differentiated
term by term on R,. We have also shown in Proposition 5.18 that this series can
be integrated term by term on any bounded interval of [0,00). Let us state these
important facts in the following theorem.

Theorem 8.2 (Eulerian form). Let g lie in DPNKP for some p € N. The following
assertions hold.

(a) For any x > 0 we have

P 00 P
Tglx) = —gx)+)_(})AN g Z (x+¥k) =) (})Aglk)
j=1 k=1 j=0

and the series converges uniformly on any bounded subset of [0, 00).

(b) If g lies in C°, then Zg lies in C° and the series above can be (repeatedly)
integrated term by term on any bounded interval of [0, 00).

(c) If g lies in C" N K™aXP:T} for some r € N, then Lg lies in C" and the series
above can be differentiated term by term up to r times.

Proof. Assertion (a) follows from identity (3.8) and the existence Theorem 3.6 (see
also Remark 3.7). Assertion (b) follows from Proposition 5.18, especially its assertion
(c2), and Remark 5.19. Assertion (c) follows from Theorem 7.5. O

Example 8.3. Let us apply Theorem 8.2 to g(x) =1lnx and p = 1. We immediately
retrieve identity (8.2). Upon differentiation, we also obtain

1 & 1 1
wix) = _x_k_l(x+k_1n<1+k>)
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Integrating on (0, x), we obtain

P_y(x) = x—xlnx—Z ((x—ﬁ—k)ln(l—i—i) —x—gln <1+]1<>>

k=1

Integrating once more on (0,x), we obtain

P_z(x) = 1 x?(3—2Inx)
— (1 5 xy k3, 1, 1
k=1
We can actually integrate both sides on (0, x) repeatedly as we wish. O

8.2 Weierstrassian form

In the following proposition, we recall an alternative infinite product representation
of the gamma function, which was proposed by Weierstrass. This representation is
usually called the Wezerstrass factorization of the gamma function or the Wezer-
strass canonical product form of the gamma function (see Artin [11, pp. 15-16] and
Srivastava and Choi [93, p. 1]).

Proposition 8.4 (Weierstrassian form of the gamma function). The following iden-
tity holds

eV 2= ek
rx) = e > 0. 8.3
(x) = — gl R (8:3)

We now show that this factorization can be generalized to any log I',-type function
that is of class CP. This new result is presented in the following two theorems, which
deal with the cases p = 0 and p > 1 separately. We observe that the special case when
p = 1 was previously established by John [49, Theorem B’] and in the multiplicative
notation by Webster [98, Theorem 7.1].

It is important to note that, just as in Theorem 8.2, the partial sums that define
the series of the theorems below are nothing other than the sequence n — fh[g](x).
Thus, these series can be integrated and differentiated term by term.

Theorem 8.5 (Weierstrassian form when degg = —1). Let g lie in C° N DO N K°.
The following assertions hold.

(a) We have y[g] = olg].
(b) For any x > 0 we have
k+1

k

Igx) = G[g]g(X)Z<9(X+k)J g(t) dt)
k=1

and the series converges uniformly on any bounded subset of [0, o).
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(c) The function £g lies in C° and the series above can be (repeatedly) inte-
grated term by term on any bounded interval of [0, 00).

(d) If g lies in " NK" for some v € N, then g lies in C" and the series above
can be differentiated term by term up to v times.

Proof. Assertion (a) follows from Proposition 6.36. Assertion (b) follows from The-
orem 8.2 and identity (6.43). Assertions (c) and (d) follow from Theorem 8.2. O

To establish the second theorem (the case when deg g > 0), we need the following
technical lemma.

Lemma 8.6. Let g lie in C' N DP NKP for some p € N*. Then
pP—2
Ag(x)—ZGjAjg’(x) - 0 as x — oo.
j=0

If, in addition, g € CP1, then
AP 1g(x) —gPV(x) = 0 as x — 0o.

Proof. By Proposition 4.12, we have that g’ lies in €% N DP~! N KP~L. The first
convergence result then follows immediately from the application of (6.22) to g'.
That is,

JPHg'l(x) — 0 as X — 00.

Let us now assume that g € CP~!. By Propositions 4.11 and 4.12, for every i €
{0,...,p — 2} the function
gi = Aig(p*2fi)

lies in €' N D2 N XK? and hence, applying the first result to gi, we obtain that
Agi(x) —gi(x) — 0 as X — 00.
Summing these limits for i = 0,...,p — 2, we obtain the claimed limit. U

Theorem 8.7 (Weierstrassian form when degg > 0). Let g lte in CP N DP N KP
with deg g =p — 1 for some p € N*. The following assertions hold.

(a) We have vlg®P)] = olgP)] = gP—D(1) — (Zg)P)(1).

(b) For any x >0 we have

p—1
Tgh = ) (A1) + () (Zg) ™ (1)
j=1
0o p—1
—g0) =3 [ gl k) =3 (5) Algli) — (3)g"™ (k)
k=1 j=0

and the series converges uniformly on any bounded subset of [0, o).
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(¢) The function Xg lies in CP and the series above can be (repeatedly) inte-
grated term by term on any bounded interval of [0, 00).

(d) If g lies in Cmax{P.T} N Kmax{P.} for some 1 € N, then Zg lies in C™¥*P.T} gnd
the series above can be differentiated term by term up to max{p,r} times.

Proof. By Proposition 4.12, we have that g(P) lies in €% N D° N K°. Assertion (a)
then follows from Propositions 6.36 and 7.7. Now, using (6.43) we get

[ee]

vig®1 = > (g% (k) —AgP Y (K)).
k=1

Using Theorem 8.2, we then obtain

p—1
L) = Y (A g+ (3) (a7 V(1) ~vig™)
j=1
n—1 p—1 )
—g(d = lm > (glx+k) =3 (5)Ag(k)—(}) g™ (k)
k=1 j=0
+ zim (3) (479 =g V()

where the latter limit is zero by Lemma 8.6. This proves assertion (b). Assertions
(c) and (d) follow from Theorem 8.2. O

Example 8.8. Let us apply Theorem 8.7 to g(x) = Inx and p = 1. We immediately
get

> X
Inl(x) = —yx—lnx— (1 k—lk—f),
nl(x) yx —Ilnx kgl n(x+k)—In X
which is the additive version of the Weierstrassian form (8.3) of the gamma function.
It is remarkable that we can now retrieve this formula in an effortless way. Upon
differentiation, we also obtain (see, e.g., Srivastava and Choi [93, p. 24])

Integrating on (0, x), we obtain

2 00 2
P_o(x) = —yx—+x—x1nx— <(x+k)1n 14> xx>.
2 2 k; ( k) 2k

Integrating once more on (0, x), we obtain

1
P_3(x) = Exz(Q —2yx —61nx)

= /1 X k 3 x?
— - KPln(1+5)—=x—>x*— ).
é(z(w ) n( +k) 2¥ 1" 6k>

Just as in Example 8.3, we can integrate both sides on (0, x) repeatedly as we wish. ¢
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Let us end this section with an aside about some potential consequences of the
technical Lemma 8.6.

Remark 8.9. If g lies in G N DP NKP for some p € N*, then by Propositions 4.8 and
4.12 we have g’ € R2". That is, for any a > 0

|
%)

P
g'(x+a)— (?)Ajg’(x) -0 as x — 0o.
j

I
o

Combining this result with the first part of Lemma 8.6, we can derive surprising
limits. For instance, we obtain for any p € {1, 2, 3}

Ag(x)—g' (x+2%) —» 0 as x — 0o.

This latter limit has the following interpretation. The mean value theorem tells us
that Ag(x) = g'(x + &x) for some &, € (0,1). The limit above then says that

g’(x—i—(ix)—gl(x—i—%) — 0 asx — oo.

In particular, if g lies in G2 and for instance eventually satisfies g”’(x) > ¢ for some
¢ >0, then

1 Ex
c &X—‘ < J g”’(x+1t)dt
2 }
= |9/(X+ix)—9'(x+%)| — 0 asx — 09,
which shows that &, — % as x — oo. O

8.3 Gregory’s formula-based series representation

The following proposition provides series expressions for g and o[g] in terms of
Gregory’s coefficients (see also Proposition D.2 in Appendix D). This proposition
follows from the next lemma, which in turn immediately follows from Corollary 6.12.

Lemma 8.10. Let g lie in C° N DP N K9 for some p,q € N such that p < q.
Let x > 0 be so that for k =7p,...,q the function g is k-convez or k-concave on
[x,00). Then we have

T*Zgl(x)] < Gk lAkg(x)l, k=p,...,q.

Proposition 8.11. Let g lie in C° N DP N K> for some p € N. Let x > 0 be so
that for every integer q > p the function g is q-convez or q-concave on [x,00).
Suppose also that the sequence q +— A9g(x) ts bounded. Then we have

JaZgl(x) — 0 as q —y 00,
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that 1s,
Tg(x) = olg] +J gt)dt— Y GnA™'g(x). (8.4)
1 _

In particular, if the assumptions above are satisfied for x =1, then we have

Y GnAMg(1). (8.5)
n=1
Proof. This result is an immediate consequence of Lemma 8.10 and the fact that the
sequence n — G,, decreases to zero. Identity (8.4) then follows from (6.18). O

Example 8.12. Applying Proposition 8.11 to the function g(x) = Inx with p = 1,
we obtain the following series representation of the log-gamma function for x > 0

1 o0
InT'(x) = §ln(27t)fx+x1nxfZGnﬂAnlnx (8.6)
n=0
= fln(27'[)—x—|—x1nx—Z|Gn+1\Z 1nx+k)

where we have used the classical identity (see, e.g., Graham et al. [41, p. 188])

n

AM(x) = Y ()M (F) flx + k).

k=0

Equivalently, using the Binet function J(x), identity (8.6) can take the form

= _Z|G“+1|Z lnx—l—k) x>0,

where, for any n € N*, the inner sum also reduces to the following integral (see,
e.g., [41, p. 192])

o] e—xt

(—)"A™lnx = — L

(1—eY)"adt, n € N*.

In particular,

oo ,—xt 1
A" Inx| < J ¢ (1764) dt = Alnx = In (1+).
o t X

In the multiplicative notation, identity (8.6) takes the following form
1 1
e e (xH1INTE (x+2)x) 2#
T _ 2 X X—%
w = vamee (52 ()

. ((x+3)(x+1)3)71290
(x +2)3x

Further infinite product representations and approximations of the gamma function
can be found for instance in Feng and Wang [36]. O
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8.4 Analogue of Fontana-Mascheroni’s series

Interestingly, when g(x) = % and p = 0, identity (8.5) reduces to the well-known

formula
i G
: n ,

where v is Euler’s constant and the series is called Fontana-Mascheroni’s series
(see, e.g., Blagouchine [20, p. 379]). Thus, the series representation of the asymptotic
constant o[g] given in (8.5) provides the analogue of Fontana-Mascheroni’s series for
any function g satisfying the assumptions of Proposition 8.11.

Example 8.13. The analogue of Fontana-Mascheroni’s series for the function g(x) =
Inx can be obtained by setting x =1 in (8.6). We obtain

1
ZIGnHIZ Y nk+1) = — 1+ In(27),

or equivalently (see Example 8.12),

—t

d “e 1
Z|Gn+1|J —(1—-eY)"dt = 1— - In(2n). O
o o t 2

The following proposition provides a way to construct a function g(x) that has a

prescribed associated asymptotic constant o[g] given in the form (8.5).

Proposition 8.14. Suppose that the series

(oo}
E Gn sn
n=1

converges for a giwen real sequence n+— s, and let g: Ry — R be such that

n
Z ) sk, n e N*. (8.7)

If g satisfies the assumptions of Proposition 8.11 with x =1, then the following
assertions hold.

(a) S =olgl].
(b) Zg(n wor (M) sk for any n € N*.
(c) sn :A“_lg(l) = A"Xg(1) for any n € N*.

Proof. 1dentity (8.7) can take the following alternative form

n

gn+1) = Z(E)Sk_g_l, neN.
k=0
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Using the classical inversion formula (Graham et al. [41, p. 192]), we then obtain

n

snp1 = ) (DR (M glk+1) = AMg(1), neN,
k=0

This establishes assertion (¢) and then assertion (a) by Proposition 8.11. Assertion
(b) is straightforward using (5.2). O

Example 8.15. Let us apply Proposition 8.14 to the series

|Gl
S = Z ne
n=1
that is,
o0 ) B 1
S = ;Gnsn with s, = (—1)" 1@.

Let g: Ry — R be a function such that
= 1
gm) = Y (DG . neN,
k=1

or equivalently (see Graham et al. [41, p. 281] or Merlini et al. [72, Lemma 4.1]),

1
gn) = —Hy, n e N*,
n

We naturally take g(x) = %HX, from which we can derive (see, e.g., Graham et
al. [41, p. 280])

1 1,

IOl Ell’l(x) + Efor

Thus, we have S = o[g]. Combining this result with the definition of o[g], we derive
the surprising identity (compare with Blagouchine and Coppo [22, pp. 469-470])

Iglx) =

o0
G 1 e 5 1t
n=1

Those formulas are worth comparing with the well-known identities (see Section 10.2)
% 1
G
Z—‘ nl o J H dt.
n 0
n=1

For similar formulas, see also Blagouchine and Coppo [22]. O
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Example 8.16. Let us apply Proposition 8.14 to the series

.« 1G4
S = ZnJra’

n=1

where a > 0. For this series, we can take

g(x) = B(x,a+1) and Zg(x) = %fB(x,a),

where (x,y) — B(x,y) is the beta function. We then derive the identity

Z Gl = ——J B(x+1,a)dx.

n+a a
n=1 + 0

Using the definition of the beta function as an integral, this identity also reads

oo

IGnl 1 Jl x®
ZTL+C1 =" In(1—x) dx.

n=1 0

for instance, we obtain

Setting a = £

oo

Gul 1Jl VR
Z2n—i—1 - 1+§ In(1—x) dx.

n=1 0

We also observe that the decimal expansion of the latter integral is the sequence
A094691 in the OEIS [90]. O

8.5 Analogue of Raabe’s formula

Recall that Raabe’s formula yields, for any x > 0, a simple explicit expression for the
integral of the log-gamma function over the interval (x,x+ 1). We state this result in
the following proposition (see Example 6.5). For recent references on Raabe’s formula,
see, e.g., Cohen and Friedman [30, p. 366] and Srivastava and Choi [93, p. 29].

Proposition 8.17 (Raabe’s formula). The following identity holds

x+1 1
J InT(t)dt = 5 In(27) + xIlnx — x, x > 0. (8.8)
X

Clearly, identities (6.10) and (6.11) provide the analogue of Raabe’s formula for
any continuous multiple log I'-type function ¥g. We recall this important and useful
formula in the next proposition.

Proposition 8.18 (Analogue of Raabe’s formula). For any function ¢ lying in

C° Ndom(X), we have

x+1 x
J Ig(t)ydt = G[g}+J g(t) dt, x >0, (8.9)

X
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where olg] s the asymptotic constant associated with g and defined by the equa-
tion

1
olgl = J Tg(t+1)dt. (8.10)
0

The challenging part in this context is to find a nice expression for o[g]. For
instance, setting x = 1 in Raabe’s formula (8.8), we obtain the identity

1
1
olln] = J InT(t+1)dt = —1+ 3 In(27) .
0
However, in general such a closed-form expression for o[g] is not easy to derive.

An expression for o[g] as a limit can be obtained using Proposition 5.18(c2).
Specifically, if g lies in €° N DP N KP for some p € N, then we have

1
olg] = nmj(fmg](twg(t))dt
n—oo 0
n—-1 n P
= lim Zg(k)—J g(t)dt—i—ZG]-Aj_lg(n) , (8.11)
n—oo = 1 oy

which is nothing other than the restriction of the generalized Stirling formula (6.21)
to the natural integers.

Series expressions for o[g] can also be obtained by integrating on the interval (0, 1)
the series representations of £g + g given in Theorems 8.2 and 8.7. For instance, we
have

P

o k+1 P
olgl = ) GjATlg(1)— ) J glt)dt—> GjAg(k) |. (8.12)
k=1

j=1 k j=0

Note also that, under certain assumptions, the latter series converges to zero as
p —n oo. In this case, (8.12) reduces to the analogue of Fontana-Mascheroni’s se-
ries; see Proposition 8.11.

Example 8.19. Applying (8.11) and (8.12) to g(x) = % and p = 0, we obtain

olgl = T}%(Zi—lmn) = Z(i—ln(l—i—i)),

k=1 k=1

which is Euler’s constant y. Identity (8.9) then immediately provides the following
analogue of Raabe’s formula

x+1
J P(t)dt = Inx, x > 0. O
x

The following proposition provides interesting identities that involve the antideriva-
tive of £g, where g is any function lying in C° N dom(X). It also yields a formula
for £G, where G is the antiderivative of g. This result is worth comparing with
Example 7.19.
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Proposition 8.20. Let g lie in C° N DP N KP for some p € N and define the
function G: R, — R by the equation

G(x) = JX g(t)dt for x > 0.
1

Then G lies in C' N DPH N KP+L. Moreover, for any x > 0 we have

IG(x) = J:Zg(t) dt—olgl (x—1)

and
x+1 x
ZXJ Tg(t)dt = J Tg(t)dt.

x 1

Proof. We have that G lies in G NDPF1NKPF! by Proposition 4.12. We then obtain
(£ZG) = Zg-— olg]

by Proposition 7.7. This establishes the first formula. Combining it with (8.9), we
obtain

x+1 X
ZXJ gt)dt = olgl(x—1)+2G(x) = J Zg(t) dt,

x 1

that is, the second formula. O

Example 8.21. Apply Proposition 8.20 to the function g(x) = lnx with p = 1, we
obtain

ZXJXH InT(t)dt = Jxlnf(t) dt = P_o(x) —P_o(1).

x 1

Using Raabe’s formula (8.8) in the left-hand side, we finally obtain

5 (2m)(x — 1) + ZolxInn) = (5) = ) — b (1),

from which we immediately derive a closed-form expression for X, (xInx); see also
Section 12.5. O

We now present a proposition, immediately followed by a corollary that provides
interesting characterizations of multiple I'-type functions based on the analogue of
Raabe’s formula. Example 8.24 below illustrates this characterization in the special
case of the log-gamma function.

Proposition 8.22. Let h lie in C*NDPTINKPTL for somep € N and letf: R, — R
be a function. Then f lies in C° N KP and satisfies the equation

x+1
J f(t)dt = h(x), x >0, (8.13)

if and only if f = (Zh)’.



107

Proof. The sufficiency is trivial. Let us prove the necessity. Differentiating both
sides of (8.13), we obtain Af = h’. Using the existence Theorem 3.6 and then
Proposition 7.7, we then see that f = ¢ + (Zh)’ for some ¢ € R. Using (8.13) again,
we then see that ¢ must be 0. O

Corollary 8.23 (A characterization result). Let g lie in C° N DP N KP and let
f: Ry — R be a function. Then f lies in GO NKP and satisfies the equation

x+1 X
J f(t)dt = olgl +J g(t) dt, x>0,
1

if and only +f f = Xg.
Proof. The sufficiency is trivial by (8.9). Let us prove the necessity. Define the
function h: R, — R by the equation

X

h(x) = olg] —|—J' g(t)dt for x > 0.
1

Then, h clearly lies in €' N DP+! N KP+!, Using Proposition 8.22 and then Proposi-
tion 8.20, we immediately obtain that f = (Zh)’ = Zg. O

Example 8.24. Applying Corollary 8.23 to the function g(x) =lnx with p =1, we
obtain the following alternative characterization of the gamma function. A function
f: R, — R lies in €9 N X! and satisfies the equation

x+1 1
J f(t)dt = 5 In(27) + xInx —x, x>0,

X

if and only if f(x) =1InT(x). O

8.6 Analogue of Gauss’ multiplication formula

In the following proposition, we recall the Gauss multiplication formula for the
gamma function, also called Gauss’ multiplication theorem (see Artin [11, p. 24]).

Proposition 8.25 (Gauss’ multiplication formula). For any integer m > 1, we
have the following identity

m—1 .
HF(X;)> = T o ks (8.14)

1
1
=0 m*T2

When m = 2, identity (8.14) reduces to Legendre’s duplication formula

f(@r(E) - Mmoo

2 2
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Remark 8.26. For any fixed m > 2, the Gauss multiplication formula (8.14) enables

one to retrieve easily the value of the asymptotic constant associated with the function

g(x) = Inx. In particular, this value can be retrieved from Legendre’s duplication

formula. Indeed, taking the logarithm of both sides of (8.14) and then integrating on
€ (0,1), we obtain

1

m—1
ZJ In r( :1)>dx - m2_11n(27't)+J InT(x) dx.

i—o Jo 0

Using the change of variable t = th) in the left-hand integral, we then obtain almost
immediately the following identity

! 1
J InT(t)dt = 51n(27'[).
0

Combining this result with (8.9), we retrieve o[ln] = —1 4 %1n(27‘[). O

Webster [98, Theorem 5.2] showed how an analogue of Gauss’ multiplication for-
mula can be partially constructed for any I'-type function. His proof is very short and
essentially relies on the uniqueness and existence theorems in the special case when
p = 1. We now show how Webster’s approach can be further extended to all multiple
I'-type functions. As usual, we use the additive notation.

Theorem 8.27 (Analogue of Gauss’ multiplication formula). Let g lie in dom(X)
and let m € N*. Define also the function gn: Ry — R by the equation

gm(x) = g (i) for x > 0.

Then we have

and
m—1 .
Igm(m g ( )
1
Proof. Let g lie in DP N XP for some p € N. Then g, also lies in DP N XP by
Corollary 4.21. Now, we can readily check that the function f: R, — R defined by

m—1

C ORIy

is a solution to the equation Af = g, that lies in XP and such that f(1) = 0. By the
uniqueness Theorem 3.1, it follows that f = £g,,. This establishes (8.15). The last
identity follows immediately. U
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Theorem 8.27 actually provides a partial solution to the problem of finding the
analogue of Gauss’ multiplication formula. A more complete result would also provide
a closed-form expression for the right-hand side of identity (8.15).

Unfortunately, no general method to provide simple or compact expressions for
Y gm seems to be known. However, such expressions can sometimes be found.

For instance, when g(x) =1lnx, we obtain

gm(x) = Inx—Ilnm and Ygm(x) = InT(x)—(x—1)lnm.

Substituting this latter expression in identity (8.15), we immediately obtain the for-

mula
m—1 X+j m ]
InT—=] = InT [ — InT(x)—(x—1)1 .1
jZOn (m) jZln <m>+n(x) (x—1)Inm, (8.16)

that is, in the multiplicative notation,

m—1 +. r() m .
Hr("m’) _ mjlnr(;l), x>0,

j=0 j=1

It remains to find a nice expression for the latter product, and more generally for
the right-hand sum of identity (8.15). On this issue, we have the following useful
result.

Proposition 8.28. Let g lie in €° Ndom(L) and let m € N*. Define also the
function g, : Ry — R by the equation gm(x) = g(;) for x > 0. Then we have

m-+1

> zg(L) = molg- | zgmitiar

m

j=1
1
= molg] —olgm] —m J g(t) dt.
1/m
Proof. The first identity can be proved simply by integrating both sides of (8.15) on
x € (m, m+1). Indeed, using the change of variable t = %1 and identity (8.10), the
left-hand side reduces to

m—1 p4 it 2
m ZJ Tg(t)dt = mJ Tg(t)dt = molgl.
i—o 1+ L 1
The second identity then follows from a simple application of (8.9). O

Example 8.29. Let us apply Proposition 8.28 to the function g(x) = lnx. We obtain

m . 1 1
ZlnF(J) = ——Inm+ - (m—1)In(2n).
oy m 2 2

Substituting this expression in (8.16) and then translating the resulting formula into
the multiplicative notation, we retrieve Gauss’ multiplication formula (8.14). O
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In the following proposition, we provide a convergence result for the function
defined in the left-hand side of (8.15), which does not require the computation of
Y gm. This result simply reduces to the generalized Stirling formula when m = 1.

Proposition 8.30. Let g lie in C° N DP N KP for some p € N and let m € N*.
Define also the function gm: Ry — R by the equation gm(x) = g(5;) for x > 0.
Then we have

x+j P -
Zz ( ) ng(t)dt—l—ZGjA’ gm(x) = monlgl

j=1

as x — oo, where
1

omlgl = cr[g]—J g(t) dt.

1/m

Proof. Theorem 8.27 and Proposition 8.28 provide the following identity
m—1 x+ ]
Zgm(x) — olgml ZZ ( )—mcm[g} x > 0.
j=0

The result is then an immediate application of the generalized Stirling formula (The-
orem 6.13) to the function £g,, (recall that g, lies in €° N DP N KP). O

We end this section with three corollaries. Corollaries 8.31 and 8.32 yield prop-
erties of the derivatives and antiderivatives of the function g in the context of the
analogue of Gauss’ multiplication formula. Corollary 8.33 shows how the antideriva-
tive of g can be expressed as a limit involving the function Xg,,.

Corollary 8.31. Let g lie in " N DP NK™*P:T) for some p € N and v € N*. Let
also m € N* and define the function gm: Ry — R by the gm(x) = g(5;). Then
the equation obtained by replacing g with g'™) in (8.15) can also be obtained by
differentiating v times both sides of (8.15).

Proof. Differentiating r times both sides of (8.15), multiplying through by m”, and
then using (7.1), we obtain

Z ( )+m(29) (1) = m£gl) () + " (L) (1).

=0

Setting x = 1, we then get
Zzg ( )+m(29) (1) = m"(Zgm) (D).

Subtracting this latter equation from the former one, we finally get
m—1

X+
ZZQ“)( J) ZZQ ( >+m Tghl(x),
j=0

which is precisely the equation obtained by replacing g with g(*) in (8.15). U
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Corollary 8.32. Letp € N, m € N*, c € R, and g € € NDP NKP. Define also
the functions G, gm, Gm: Ry — R by the equations

x X X
G(x) = (:JFJ1 gt)dt, gm(x) =g<a), Gm(x) = G (E> for x > 0.
Then both functions G and G, lie in CLNDPHLNKP+L  Moreover, for any x > 0
we have
m+1

SGn(x) = & JX Sgm(t) dt+ (x — 1) (c _ EJ

Zgm(t) dt) .
m Jq m

Proof. The first part follows immediately from Proposition 8.20 and Corollary 4.21.
Now, by definition of G, we have

Gm(x) = c—&—%J'mgm(t) dt = c—i—% (L gm (1) dt—J1 gm (1) dt).

The claimed identity can then be established easily using Proposition 8.20 and then
applying identity (8.9). O

Corollary 8.33. Let g lie in C°Ndom(X). Define also the functions g, : Ry — R
(m € N¥) by the equation gy (x) = g(J-) for x > 0. Then we have

g(t) dt, x> 0.

iy Z9m(m)~ Ean(m) _

m—co m

Moreover, if g is integrable at 0, then

X
lim ing(mx) = J g(t) dt, x > 0.

m—oo M 0

Proof. Replacing x with mx in (8.15) and dividing through by m, we obtain
1 1 e j 1 & j

—X = — z - - — Sgl— ).

— Igm(mx) = — ;0 9<X+m> m]; 9<m>

Letting m —y oo in this identity and using (8.9), we see that the first Riemann sum
on the right side converges to

1 X
J Zg(x+1t)dt = olg] —I—J g(t) dt
0 1
while the second one converges (if g is integrable at 0) to

1 1
J Yg(t)dt = olgl —J g(t) dt.
0

This establishes the corollary. O
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8.7 Asymptotic expansions and related results

In this section, we provide and investigate asymptotic expansions of (higher order dif-
ferentiable) multiple log I'-type functions. We also establish and discuss some impor-
tant consequences of these expansions, including a variant of the generalized Stirling
formula and an extension of the so-called Liu formula to multiple log I'-type functions.

To begin with, let us first recall the asymptotic expansion of the log-gamma func-
tion (see, e.g., Gel'fond [39, p. 342] and Srivastava and Choi [93, p. 7]).

Proposition 8.34. For any q € N*, we have the following asymptotic expansion
as x — oo

1 1 i B
InT(x) = 2 In(27) — x + <X — 2> Inx 4+ E ﬁ +0 (Xiqil) . (817)
k=1

For instance, setting q = 4 in equation (8.17), we obtain

1 1 1 1
InT'(x) = 51n(27‘t)—x—|— (X—2> lnx—l—m—m—i—O(x%).

We now provide a generalization of this result to multiple log I'-type functions.
Even more generally, in the next proposition we provide for any integer m € N* an
asymptotic expansion of the function

m—1 ]
> = 1. 8.18
X = . g (x+ m) ( )

Proposition 8.35. (a) Let g lie in @' N DP N K™axP1} for some p € N. Then,
for any m € N* and any x > 0, we have

1 m—1 ) x+1 1
— > - = Xg(t)dt — — R
TP (x+2) = | zotat— 5 g+ Rata),

with

1
Rm(x) = %L By ((mt}) (Zg)'(x + 1) dt

and

1 [t ,
[Rin(x)] < om L I(Zg) (x + 1) dt.

For large x the latter integral reduces to |g(x)|.

(b) If g lie in C29 N DP N K™x{P:2d} for some p € N and some q € N*. Then,
for any m € N* and any x > 0, we have

1 m—1 j x+1 1
— z — ) = Tg(t)dt— —
SY mo(xel) = | mewa ot

j=0 X

q
1 Box ox-1) q
+ k; S TR OO
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with
(Zg)9) (x + 1) dt

B Jl Baq ({mt))
m2d ), (2q)!

and

1 [Bggl [*
R < o o [ Ize B vat.
- Jo

For large x the latter integral reduces to |g(297%)(x)|.

Proof. Let us prove assertion (b) first. The first part follows from a straightforward
application of Euler-Maclaurin’s formula (Proposition 6.31) to f = £g, with a = x,
b=x+1, and N = m. Now, we see that the function (£g)%9) lies in K(P—29)+ by
Proposition 4.12, and hence also in KX~ by Proposition 4.7. Thus, for sufficiently
large x we obtain

1 1
J (Zg)? (x4 t)|dt = J(Zg)(Qq)(x-i—t) dt’
0

0

= |z (x+ 1)~ (£g) 29 V)|
By Proposition 7.7, the latter expression reduces to
2920 Dk + 1) — 299 (x)| = 1929V (x)].

Assertion (a) can be proved similarly. Here we observe that (£g)’ lies in X(P~)+ and
hence also in K~1. Thus, for sufficiently large x we obtain

1
| ooy dt’ — lg00)l

1
j (£9)'(x + D)l dt =
0 0

This completes the proof. O

Setting m = 1 in Proposition 8.35, we derive immediately an asymptotic expansion
of the function Xg in terms of its trend and the higher order derivatives of g. As this
special case is very important for the applications, we state it in the next proposition
(in which we also use (8.9) to evaluate the integral of Xg on (x,x + 1)).

Proposition 8.36. The following assertions hold.
(a) Let g lie in @ N DP N K™2x(P.1} for some p € N. Then, for any x > 0 we

have N
Zg(x) = olgl+ | glt)dt— 3 g(x) +Ralx),
with )
Ri(x) = L B1(t) (Zg)/(x +1) dt
and )
Ra(ll < 5 | Iza) (x+lat.

For large x the latter integral reduces to |g(x)|.
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(b) If g lie in C29 N DP N K™x{P:2d} for some p € N and some q € N*. Then,
for any x > 0 we have

Bak (2k—1) q
2197 K RIG), - (8.19)

X q
Zg(x) = olgl+ | glt)dt—Z g0+ -
k=1

with

1
RiG) = "2;22‘;(;) (£9)29)(x + 1) dt

and

1
RN < G2 [ Ime e aar.

For large x the latter integral reduces to |g29—1)(x)|.

Example 8.37. Taking g(x) =1lnx and p =1 in (8.19), we retrieve immediately the
asymptotic expansion given in (8.17). The following equivalent, but more concise,
formulation of this expansion is given in terms of Binet’s function. For any q € N*,

we have
q

By —q—1
= ——+0 q — 00.
J(x) ];k(k+1)xk+ (x ) as X — 00 O
Remark 8.38. The following alternative asymptotic expansion of the Riemann sum
(8.18) can be immediately obtained using the general form of Gregory’s formula
(Proposition 6.30). If g lies in C° N DP N KP for some p € N and if it is g-convex or
g-concave on [x, 00) for every integer q > p, then we have

A 1 j 1 ¢ K—1
b - =Y =z 2y = A¥—
J g(t) dt — ]ZO g(x+m> +— ;Gk gm(mx) + R,

x

where

Rl < 2 Gelatgnimal  and  gulx) = g(2).
(Compare with Proposition 8.30.) If we set m = 1 in this latter expansion, then we
immediately retrieve the inequality of Lemma 8.10 as well as the Gregory formula-
based series expression for Xg given in (8.4). It is then important to note that the
asymptotic expansion (8.19) often leads to divergent series, contrary to its “cousin”
formula (8.4), as already observed in Remark 6.32. For instance, setting x = 1 in
(8.17) leads to a divergent series whereas setting x = 1 in the “cousin” formula (8.6)
leads to an analogue of Fontana-Mascheroni’s series. In this regard, we observe that
the Gregory coefficients have the asymptotic behavior

1

G ~ —_—
Gl n(lnn)?

as n— oo,

while the Bernoulli numbers satisfy

2(2n)! 2n
(%T%C(Zn) ~ 4\/6(%) asn — oo

see, e.g., Graham et al. [41, p. 286]. O

‘B2n| =
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A variant of the generalized Stirling formula. Interestingly, from Proposi-
tion 8.35 we can easily derive the following variant of the generalized Stirling formula.

Proposition 8.39 (A variant of the generalized Stirling formula). Let g lie in €29
DP N K29 for some q € N* U{ } and some p € N satisfying p < 2q — 1. For any
m € N* we have

1! j x P B
k _
HZZQ <X+m)_,[ g(t)dt—kak!g(k Yix) — olg] as x — 00.
j=0

1 k=1

In particular,
X P
B
Zg(x) 7,[ g(t)dt— Z ?]: g VY(x) - olgl as x — 00. (8.20)
1 k=1

Proof. For every k € {p,...,2q} we clearly have that g lies in D* N X* and hence
g™ vanishes at infinity by Theorem 4.14(b). The result then follows from Proposi-
tion 8.35. The particular case is obtained by setting m = 1. O

It is clear that the convergence result (8.20) coincides with the generalized Stirling
formula (6.21) whenever p = 0 or p = 1. Thus, it does not bring anything new in
these cases.

Now, we observe that if g lies in C®*{24:T N DP N K™ax{24.7) for some q € N*U{%}
and somep € N satlsfylng p < 2q—1, then the convergence result in (8.20) still holds
if we replace g with g(*) and p with (p —1),. Moreover, this modified result can
also be obtained by differentiating v times both sides of (8.20) and then removing
the terms that vanish at infinity. This important fact can be easily proved similarly
as for the generalized Stirling formula (see Proposition 7.12 and the comment that
follows it).

Remark 8.40. We now see that the generalized Stirling formula (6.21) could also
be established similarly as its variant (8.20), i.e., using the Gregory formula-based
asymptotic expansion of Xg as discussed in Remark 8.38. However, formula (6.21)
is a very elementary consequence of Lemma 2.7, as commented in Remark 6.16. Its
proof is elementary, elegant, and leads to the whole Theorem 6.11, which is a strong
result that also provides inequalities. O

The restriction of the limit (8.20) to the natural integers provides the following
alternative formula to compute the asymptotic constant o[g]. Under the assumptions
of Proposition 8.39, we have

olgl = nlgrgo (Zg J dt—Z o K gl > (8.21)

Analogue of Liu’s formula. Liu [64] (see also Mortici [75]) established the following
formula. For any n € N* we have

nl =Tn+1) = vV2mn (%)nexp (Jw%_t{t}dt>.
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This formula provides an exact (as opposed to asymptotic) expression for the gamma
function with an integer argument.

We now propose a generalization of this identity to multiple log I'-type functions
with real arguments. We call it the generalized Liu formula. Recall first the following
Dirichlet test for convergence of improper integrals (see, e.g., Titchmarsh [96, p. 21])

Lemma 8.41 (Dirichlet’s test). Let a > 0 and let f: R, — R be so that the
function x — [ f(t) dt is bounded on [a,00). Let also g lie in C*ND°NK°. Then
the itmproper integral

J f(t)g(t) dt
converges.

Proposition 8.42 (Generalized Liu’s formula). (a) If g lies in C2NDINK2, then
for any x > 0 we have

g(t)dt — % g(x) + JOO (1 —{t}) g’(x+1t)dt.
0]

(b) If g lies in G291 N D24 N K29FL for some q € N*, then for any x > 0 we

have
_ " 1 = Bk miea)
fg(x) = olgl+| g(t)at 29(X)+Z(2k),9 (x)
1 k=1 :
* Baq({t) (2q)
+L (;q)! g9 (x + 1) dt.

Proof. Let us prove assertion (b) first. We apply assertion (b) of Proposition 8.36 to
the function g with p = 2q. Thus, for any x > 0 and any n € N we have

x+n+1 _

RI(x) = L+1 qu((;)!x}) (£g)29/(t) at
[T Bagllt—x) 5 )
L (2q)! (2g) " (t) dt.

By Proposition 7.7, we have
(£9)*9(t+1) — (£g)*V (1) = ¢V (1)

and hence we obtain
R{(x) = Si(x) +Td(x),

where
Sd(x) = JWWQ‘“‘)&)&,
x+n+1 _
Tl = ‘L+n qu((;)!m (£g)9) (1) dt.
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Now, we observe that the sequence n + S7(x) converges by Dirichlet’s test (see
Lemma 8.41). Indeed, g(®%) lies in €' N D° N K° by Proposition 4.12, and for every
u > x we have that

J“ Baq({t —x})
x  (2q)!

at

J””‘ Bag ({t})
0 (2q)!
(

() ’ Bag
J eqr Y S g

[u—x]

at

where we have used the well-known fact that the integral on (0, 1) of the Bernoulli
polynomial B4 is zero.

Let us now show that the sequence n — T,J(x) approaches zero as n — oco. Using
integration by parts, we obtain

Tix) = —Ll Bﬁ;qgt) (Zg)9 (x +n +1t)dt

Bag1(t) )
J (2;+1)'( g)29 Y (x 4 n +t) dt.

Since (Xg)29*1) lies in X!, for large n we obtain

|B2 +1‘
q < 1=aqtll
Tl < el

1
J (£g)P9 Y (x 4 n +1) dt’
0

_ |BZq+1‘ (2q)
~ 2q+ 1) ‘9 (e,

which approaches zero as n — co by Theorem 4.14(b). This proves assertion (b).
Assertion (a) can be proved similarly by applying assertion (a) of Proposition 8.36
to function g with p = 1. For any x > 0 and any n € N we have

Ry (X) = S» (X) +Th (X),

where

X+1
xu)z-{“ By ({t — x}) g’(t) dt

X

x+n+1
T = [ B izer(mar.
X+n
We now see that the sequence n +— S, (x) converges by Dirichlet’s test. Moreover,
the sequence n — T, (x) approaches zero as 1 — oo. Indeed, using integration by
parts we obtain

1
T.(x) = L Bi(t) (Zg)' (x +n +1t)dt
= %g'( —I—n)—L 322()(29)”( +n+1t)dt,

and we conclude the proof as in assertion (b) since g’ lies in €1 N D% N K°. O
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Example 8.43. Let us apply assertion (a) of Proposition 8.42 to g(x) = lnx. We

obtain . . ~1_tg
InT(x) = 51n(27t) —x+ (x— 2) 1nx+J'O 2t+x dt,
or equivalently,
joo = Pimeneo = |2 Wy
o t+x
which extends the original Liu formula to a real argument. O

Example 8.44. Applying assertion (a) of Proposition 8.42 to g(x) = %, we obtain

the following integral expression for the digamma function

1 (* -3
= lnx— — 2 dt.
wix) X0 +L (t+x)?
This expression seems to be previously unknown. O

Setting x = 1 in Proposition 8.42, we immediately derive an integral representation
of the asymptotic constant o[g]. We state this observation in the following corollary.

Corollary 8.45. (a) If g lies in C2 N D! NK?, then we have

olgl = % g(1) + ro ({th—3) g'(t) at.
1

(b) If g lies in 29t N D24 N K29+ for some q € N*, then we have

Loy Bae ey [T Baalith) g
olol = jolt= 3 e - | ST et a

Remark 8.46. Proposition 8.42 and Corollary 8.45 enable one to evaluate certain
improper integrals involving polynomial functions of the fractional part of the inte-
gration variable. For example, to establish the identity

® {x}—1 3 1 1
= ——+-In2+-1n3

L 1 g TgmeTt g
(Srivastava and Choi [93, p. 600, Problem 11]), we simply use assertion (a) of Corol-
lary 8.45 with g(x) = %1n(2x + 1). In this case, we have

Yg(x) = ;1n2(x—1)+;1nr<x+;) —;mr(g)

and the integral is simply equal to olg] — %g(l). O
Remark 8.47. In Proposition 8.42, we could substitute o[g] from its expression given
in Corollary 8.45. But then, the restriction to the natural integers of the resulting
formulas will simply reduce to the application of Euler-Maclaurin’s formula (Propo-
sition 6.31) to g, witha=1,b=n,h=1,and N=n—1. O
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8.8 Analogue of Wallis’s product formula

In the following proposition, we recall one of the different versions of Wallis’s product
formula (see, e.g., Finch [37, p. 21]).

Proposition 8.48 (Wallis’s product formula). The following limit holds

1.3 ... (9n—1
lim 3 (2n )\/ﬁ:

! 8.22
noo 2-4 .-+ (2n) N (822)

In the additive notation, identity (8.22) becomes

2n
- 1 k—1 _
lim (2 1n(7m)+k;(—1) 1nk> = 0.

The following proposition gives an analogue of this latter formula for any function
g lying in €° Ndom(X).

Proposition 8.49. Let g lie in C°NDP NKP for some p € N. Let §: R, — R be
the function defined by the equation §(x) =2g(2x) for x > 0. Let also h: N* - R
be the sequence defined by the equation

2

h(n) = olg] — olgl +J (g(2n+1t) —g(t)) dt
1
P

+) Gj(A'glen+1)—A'§(n+1))  forneN
j=1

Then we have
n—oo

2n
lim (h(n)+Z(l)klg(k)> = 0. (8.23)
k=1

Proof. The function § lies in €° N DP N KP by Corollary 4.21. By (5.2), for any
n € N* we thus have

2n 2n n
D (¥ gk) = Y glk)—) §(k) = Zg(2n+1)—Zgn+1).
k=1 k=1 k=1

Using the discrete version of the generalized Stirling formula (8.11), we get

2n+1 P )
g(t)dt+ ) GjA 'g(2n+1)
j=1

2n
olg) = Jim [ 3 g~ |
k=1

1

and
n n+1 P )
0[] = lim Zg(k)—J gl)dt+) G A 'Gm+1)
j=1

This establishes the claimed formula. O
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Formula (8.23) actually holds for infinitely many sequences n — h(n). Indeed, if it
holds for a sequence h(n), then it also holds for instance for the sequence h(n)+n—9
for any q € N*. Thus, to obtain an elegant analogue of Wallis’s product formula,
it is advisable to choose h among the simplest functions. For instance, we could
consider the sequence obtained from the series expansion for h(n) about infinity after
removing all the summands that vanish at infinity.

Example 8.50. Let us apply Proposition 8.49 to g(x) =Inx with p = 1. We obtain
1 1
h(n) = 2nln(2n+2)— (2n + 2> In2n+1)4+hnhn+1)—1+ 5 In(27)

= %ln(nn) +0(n7?).

Replacing h(n) with % In(7n) in (8.23) as recommended above, we retrieve the original
Wallis product formula (8.22). O

Example 8.51. Let us apply Proposition 8.49 to the harmonic number function
g(x) = Hyx with p = 1. After a bit of calculus we get

1 1
h(n) = §H2n+1+51n2+1n(n+1)—1])(2n+3)

= %(Y-i—lnn) +0(n).

We then obtain the following analogue of Wallis’s product formula

2n
. k .
lim (—lnn+2 > (-1) Hk> = v,
k=1
which provides an alternative definition of Euler’s constant y. O

Example 8.52. Let us apply Proposition 8.49 to the harmonic number function of
order 2
gx) = HP = ¢(2)—¢(2,x+1)

with p = 1. After some algebra we obtain the following analogue of Wallis’s product
formula
2n (2) 7_(2
. _ 1\k _
Jim ) (—1)*H 24" ¢
k=1
Remark 8.53. Alternative sequences for h(n) may be considered in Proposition 8.49.
For instance, if g lies in €9 N DP NKP for some p € N, then it is easy to see that
2n
D (¥ Tgk) = —Z§n+1), neN,
k=1
where §: R, — R is the function defined by the equation §(x) = Ag(2x—1) for x > 0.
Thus, assuming that § lies in X°, identity (8.23) also holds for

n+1 (p—1)+ )
h(n) = o[g]+J Gydt— Y G A Igm+1).
1 P
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Similarly, we can easily see that

D (1) g(k) = g(1)—g(2n) +Z§(n), neN,

where §J: R, — R is the function defined by the equation §(x) = Ag(2x) for x > 0.
Thus, assuming again that § lies in K°, identity (8.23) also holds for

n (p—1)+

hin) = gl2n) —gl1) —olgl | gltidt+ Y G;aTgn).
j=1

It is clear that the most appropriate function h among these possibilities strongly
depends on the form of the function g. O
Remark 8.54. Using summation by parts with the classical indefinite sum operator
(see, e.g., Graham et al. [41, p. 55]), it is not difficult to show that

Ixg(2x) = xg(2x) —g(2) — Ix ((x +1)(Ag(2x) + Ag(2x + 1)) (8.24)

(provided both sides exist). More generally, for any m € N*, we can show that

m—1

Zyg(mx) = xg(mx) —g(m) — Z I ((x +1) Ag(mx +3)) .
j=0
For instance, using (8.24) we obtain
1 1
Iz = X2 — b2~ L (14 5+ gt )
= w2y b —x- g+ -5 (0 (x5 ) -0 (3))
= X¢(2X)—%ﬂ)(x)—x—%ﬂ) <x+;> +i(2—21n2+y).

As this example demonstrates, formula (8.24) can sometimes be very useful in Propo-
sition 8.49 for the computation of o[g]. O

8.9 Analogue of Euler’s reflection formula

Recall that the identity
MNz)l'1l—z) = mcsc(nz) (8.25)

holds for any z € C\Z. This identity, known by the name Euler’s reflection formula
(see, e.g., Artin [11, p. 26] and Srivastava and Choi [93, p. 3]), can be proved for
instance using the Weierstrassian form of the gamma function.

Motivated by this and similar examples, it is then natural to wonder if an analogue
of Euler’s reflection formula holds for any multiple log I'-type function, at least on



122

R\ Z, or even on the interval (0, 1). However, this question seems rather difficult and
reflection formulas as beautiful as (8.25) are relatively exceptional.

Now, if we logarithmically differentiate both sides of (8.25), we obtain the follow-
ing reflection formula for the digamma function (see [93, p. 25])

P(x) —W(1l—x) = —mcot(mx). (8.26)

Using an appropriate integration, we also obtain the following reflection formula for
the Barnes G-function (see [93, p. 45])
X
InG(1+x)—InG(1—x) = xIn(2n) — J mtt cot(7tt) dt. (8.27)
0
These and other examples show that the reflection formulas usually share a com-
mon pattern. Their right sides typically include 1-periodic functions or integrals of
1-periodic functions while their left sides are of one the following forms

Xg(x) £ Xg(1l—x) or Yg(l+x)+Xxg(l—x)

for some appropriate functions g.

In this section, we investigate this important topic in the light of our theory. To
get straight to the point, we have not found an analogue of Euler’s reflection formula
that is systematically applicable to any multiple log I'-type function. We nevertheless
present a few interesting results that could hopefully be the starting point of a larger
theory.

First of all, due to the presence of the arguments x and 1 — x in most of the
reflection formulas, it is important to see how the domain of the functions considered
in this work can be extended to a larger set. Since many functions g involved in
the difference equation Af = g have singularities at 0 (e.g., g(x) = %), we suggest
extending the domain of all these functions to the set R\ {0}. Due to the nature of
the difference operator A, any solution f is then required to be defined on R\ (—N).
The domains of many other associated functions and identities of this theory can be
extended likewise. For instance, for any p € N and any n € N*, the domain of the
function f}[g] defined in (1.4) can be extended to R\ (—N). Similarly, for any p € N
and any a € R\{0}, the domain of the function p§[g] defined in (1.7) can be extended
to R\ {—al.

We now have the following important result.

Lemma 8.55. Let g: R\ {0} = R be a function whose restriction glg, to R lies
in DPNXKP for some p € N. Then, there exists a unique function f: R\ (—N) — R
such that Af =g and flz, = Z(glr,). Moreover,

f(x) = lim fP[g](x), x € R\ (—N).

n—oo
Proof. For any m € N and any solution f: R\ (—N) — R to the equation Af = g, we

must have

flx—m) = f(x) = ) glx—k), x€R,\N (8.28)
k=1
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This clearly establishes the first part of the lemma.
Let us now prove that for any x € R, \ N and any integers 0 < m < n we have

fPlgl(x) = Y glx—k) = fRlglx—m)— ) pRiglx—k). (8.29)
k=1 k=1

On the one hand, for j =1,...,p, we have

S0 = X = YAt = (-5

and hence using (1.7) we obtain
m m P
> ehlgx—1) = > glxrn—k—=> ()= (™) A lgm).
k=1 k=1 j=1

On the other hand, using this latter identity and subtracting the right side of (8.29)
from the left side, using (1.4) we obtain

n—1 m m
D (gx—m+k) —glx+k)—> glx—k+)Y gx+n—k),
k=0 k=1 k=1

which is identically zero. This establishes (8.29).
Let us now show that the sequence n +— ph[gl(x — k) converges to zero for any
x € Ry \N and any k € N. By (2.12) it is actually enough to show that the sequence

n— gnn+l,...,n+p—1,n+x—XK

converges to zero. However, by Lemma 2.5 this latter sequence can be sandwiched
between the sequences

n+— gmh—-kn+l—-X%...,n+p—1—kn+x—Kk|

and
n— gmn,n+1,...,n+p—1n+xl,

which both converge to zero by (2.12).
Finally, let f: R\ (—N) — R be the unique function defined in the first part of
this lemma. Using (8.28) and (8.29), since g lies in DP N KP we obtain

flx—m) = Zglx)—Y glx—k = lim Rlgx)— Y glx—k
k=1 k=1
= lim flglx—m),

which establishes the second part of the lemma. U
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Lemma 8.55 shows that the domain of the function X g can be extended to R\ (—N)
whenever g is defined on R \ {0}. We then use the same symbol Xg for this extended
function. Moreover, in this case we have

Ig(x) = lim fRlgl(x), x€R\(-N)

n—o0

and the Eulerian form (8.1) of Xg extends similarly. Actually, when g is a function
of a complex variable, Lemma 8.55 can be easily adapted to extend the function Xg
to an appropriate complex domain.

Let us now establish reflection formulas on R \ Z for functions Xg when the re-
striction of g to R, lies in D% N K°. The result is presented in the following two
propositions, which deal separately with the cases when g|g\z is odd or even. The
proofs of these propositions are similar and we therefore omit the second one.

Proposition 8.56. Let g: R\ {0} — R be such that glg, les in D°NXK° and let
w: R\Z — R be the function defined by the equation

w(x) = Zg(x)—Xg(l—x) forx e R\ Z.
Then the following assertions are equivalent.
(i) The function glg\z 15 odd.
(1t) The function w s 1-periodic.

(i42) We have that glg\z vanishes at —oo and

w(x) = ]\}1_1}1 Z g(x +k), x € R\ Z.
“IkI<N

Proof. The equivalence (i) < (ii) is trivial since Aw(x) = g(x) 4+ g(—x). Let us prove
the implication (iii) = (ii). We have

Aw(x) = ]\}iinmlng(g(x—i— k+1)—g(x+k))

= lim (g(x+N+1)—g(x—N)) = 0.
N—o0
Finally, let us prove the implication (i) = (iii). Using Lemma 8.55 we obtain

oo

Y (glx+¥) +glx—k—1))

€
=
|

= lim [—g(x—N-1+ ) g(x+¥k)
[kI<N

This completes the proof. U
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Proposition 8.57. Let g: R\ {0} — R be such that glg, lies in D° N K° and let
w: R\Z — R be the function defined by the equation

w(x) = Zg(x)+Zg(l—x) forx e R\ Z.
Then the following assertions are equivalent.
(i) The function glg\z is even.
(1t) The function w s 1-periodic.

(i42) We have that glg\z vanishes at —oo and

wx) = —g(x)+ lim Y (g(k)—glx+k), xeR\Z

N—o0
1<IKIKN

Example 8.58 (The digamma function). Consider the odd function g(x) = 1/x on
R\ {0} for which we have the identity Zg(x) = P(x) + v (see Section 10.2). This
identity actually holds not only on R, but also on R\ (—N) since by Lemma 8.55 the
digamma function 1 extends to this larger domain through the following Eulerian
form (see also Srivastava and Choi [93, p. 24])

bix) = ‘Y‘iﬂ;(i‘xik)’ x € R\ (=N).
=1

Now, using Proposition 8.56 we immediately obtain the identity

) —P(1-x) = lim ngHk

[kl<

, x € R\ Z,

where the right-hand function is 1-periodic. Finally, it can be proved (see, e.g., Aigner
and Ziegler [3, Chapter 26], Berndt [18, p. 4], and Graham et al. [41, Eq. (6.88)]) that
this function reduces to —7mcot(7tx). We then retrieve the reflection formula (8.26)
for the digamma function. O

Example 8.59 (A variant of the digamma function). Consider the even function
g(x) = 1/|x| on R\ {0}. Using Lemma 8.55, we then obtain the following expression
for Xg on R\ (—N)

oo

1 1
Lolx) = ) <k+1_ |x+k>’

k=0

or equivalently,

> 1 1 > 1 1
b - - —
9(x) Z(k+1 x+k)+kzo(x+k x+kl>’

k=0
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where the first series reduces to \(x) +vy. If x > 0, then the second series is zero. If
x < 0, it reduces to

[—x] [—x

o0 1
Z . 2 2
mln{M,O} = E x+k = 2 E Akll)(x+k)
k=0 k=0 k=0

= 2P —{—=x}) —(x)).

Using Proposition 8.57, we then obtain that the function

1 1

Yg(x)+Zg(l—x) = —i—l— lim Z <|k|_|x—|—k|

x| N5
1<kIKN

), x € R\ Z,

is 1-periodic. Using the reflection formula for 1, we also obtain

Lg(x)+2g(l—x) = Y{{x}) +¥(1—{x})+2y
= 2V¥({x}) + mcot(mx) + 2v, x € R\ Z,

which provides a closed expression for this periodic function. O

Example 8.60. Consider the function g: R — R defined by the equation

x+1

27“ for x € R.
X

g(x) =
We observe that both functions g(x) and §(x) = g(—x) have restrictions to R, that
lie in D% N K°. However, the function g is neither even nor odd. Denoting its even
and odd parts by g and g_, respectively, we have

gx)+g(—x) 1

g+(x) = 5 T X241
_ogx)—g(—x)  x

9-(x) 2 Rz

and we can derive a reflection formula for each of these functions.
Now, it is not difficult to see that (see Example 5.10)

Lg+(x) = JWA+1) —vx+1));
Ig-(x) = RO+ +bx+1).

Using Propositions 8.56 and 8.57, we then see that both functions
g+ (x) +Zg+(1—x) and Yg_(x)—Xg_(1—x)

are 1-periodic. Moreover, their sum Yg(x)+X§(1—x) is also 1-periodic. Equivalently,
the function

RPx+1) =Pl —x+1) =I(Wx+1) +P(1—x+1))

is 1-periodic. However, we do not have a reflection formula for Xg or XZg. O
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Although Propositions 8.56 and 8.57 constitute major steps in the investigation
of reflection formulas, they do not provide closed-form expressions for the 1-periodic
functions involved in these formulas. For instance, considering the reflection formula
for the digamma function (see Example 8.58), we see that Proposition 8.56 does
not yield the right-hand side of identity (8.26). Moreover, it seems that such an
expression, obtained for example using Herglotz’s trick (see Aigner and Ziegler [3,
Chapter 26]), is very specific to the case when g(x) = 1/x. Now, finding a closed-
form expression in the general case remains a very interesting open problem: such
a result would provide an analogue of Euler’s reflection formula for a wide class
of functions. In this regard, we observe that Herglotz’s trick uses an analogue of
Legendre’s duplication formula in the additive notation. Thus, a suitable adaptation
of this trick could be helpful to tackle this problem.

Let us now investigate the more general case when the function glg, lies in DP N
XKP for some p € N. We observe that some reflection formulas can be obtained by
integrating or differentiating both sides of a given reflection formula. Thus, if gl , lies
in ' NDINXK? for instance, we know from Proposition 4.12 that g|g, lies in €°ND°N
K and we may try to find a reflection formula for £g’ using Propositions 8.56 and
8.57. Since Xg’ and (Xg)’ differ by a constant by Proposition 7.7, a reflection formula
for Xg can then be obtained by integrating both sides of the reflection formula for
Y g’. This approach is inspired from the elevator method (as discussed in Section 7.3).

For instance, integrating both sides of (8.26) on (%,x), where % <x <1, we get
the identity

InT(x) +1InT(1—x) = In(mesc(mx)).
Thus, we retrieve Euler’s reflection formula on the interval (%,x) and this formula

can be extended to the complex domain C\ Z by analytic continuation. The identity
(8.27) can be obtained similarly, observing that

InG(x+1) = InT(x)+1nG(x).

Now, let g: R\ {0} = R be a function such that g|g, lies in DP N KP for some
p € N. Let also w[g]: R\Z — R and w_[g]: R\ Z — R be the functions defined by
the equation
wylgl(x) = Xg(x) £ Xg(1—x) for x e R\ Z.

We then observe that
Awilgl(x) = g(x) Fg(—x), x€R\Z

It follows that w, (resp. w_) is 1-periodic if and only if glg\z is even (resp. odd).

The following proposition provides an explicit expression for the function w-[g]
whenever it is 1-periodic. This expression is constructed from the very definition of
Xg.

Proposition 8.61. Let g: R\{0} — R be such that gz, lies in DP NKP for some
p € N. Then the following assertions hold.
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(a) If glg\z s odd, then the function w_[g] is 1-periodic and is equal to

T}gl(l)()( Z gx+k)—gx—n +Z( )A’ tg(n ))

[kl<n—1

(b) If glg\z ts even, then the function w,[g] is 1-periodic and is equal to

1m1<—mm+- > (gl —glx+K)

e 1<Ikl<n—1
i 1
glx—m)+ N lg(n )>.

Proof. Let us prove assertion (a). That w_[g] is 1-periodic is clear from the discussion
above. Now, using Lemma 8.55 we obtain

w_[gl(x) = lim (f7lgl(x) + fR[g](1 —x])

n—o0
n—1 P )
= lim [} (g(l—x+Kk) —glx+k)+)_ ((’j‘) — (1}")) Nlg(n)
k=0 j=1
This proves assertion (a). Assertion (b) can be established similarly. O

Example 8.62. Consider the odd function g: R — R defined by the equation

Q(X)ZX—Til for x € R.

The function g|g, clearly lies in D? N X? and we have (see Example 5.10)
£9(x) = (§) — R(x +1)).
By Proposition 8.61, the function
Lg(x) —Zg(1—x) = RWP(I—x+1) —P(x+1))

is 1-periodic and is equal to the limit

lim [~ 3 h(x+k) —h(x—n)+(2x—1hn) |,
noree [kl<n—1
where h(x) = g(x) — x. O

Example 8.63 (Euler’s reflection formula). Consider the even function g: R \ {0}
defined by the equation g(x) =In|x| for x € R\ {0}. The function g|z, clearly lies in
D! N XK' and, since A, In|l(x)| =In|x| on R\ (—N), we must have

Ig(x) = Wrx)l,  xeR\(-N).
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By Proposition 8.61, the function |I'(x)I"(1 —x)| on R\ Z is 1-periodic and is equal to

. 1 k
T}E;%o; H x+k|’

1<lklsn

Euler’s reflection formula then shows that this limit is also |7tcsc(7tx)|, as expected
(see Artin [11, p. 27]). O

Remark 8.64. We observe the following interesting link between the analogue of
Euler’s reflection formula and the logarithm of the generalized Stirling constant (see
Definition 6.17). Let g: R\ {0} — R be an even function such that glz, lies in
C° Ndom(X). Assume also that g is integrable at 0. Then, we have

1 1 1
olole.) = | Zgttiar = 7| (Zglt)+ g1 —v)at,

that is,

1 1

olgle.] = ; | wlglit)ar.
2Jo

For instance, for the function g(x) = In|x| (see Example 8.63), we obtain

1

olgle,] = %L In(7tcsc(mt)) dt

and it is not difficult to see that this expression reduces to %1n(27t). O

8.10 Analogue of Gauss’ digamma theorem

The following formula, due to Gauss, enables one to compute the values of the
digamma function ¢ for rational arguments. If a,b € N* with a < b, then we
have

[(b—1)/2] .
U (E) = —vy—In(2b) — g cot % +2 ; cos (2]’7‘(%) In (sin {:) (8.30)
(see, e.g., Knuth [53, p. 95] and Srivastava and Choi [93, p. 30]). This formula can be
extended to all integers a, b € N* by means of the difference equation P (x+1)—p(x) =
1/x.
For instance, we have

3 us
-] = - — —3In2.
1])(4) y+2 31ln

It is natural to wonder if an analogue of formula (8.30) holds for any multiple
log I'-type function. Finding an analogue as beautiful as this formula seems to be
hard. However, we have the following partial result.
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Proposition 8.65. Let g € D°NX° and let a,b € N* with a <b. Then

where

Wp = ev and S}’[g] = w];:,kg ()
Proof. By definition of the map X, we have

a(y) = am (a(%)-5a(259)

k=1 k=0

bn—-1 k
lim Z (‘Ltb(k) —ub(k_ (1)) g (b) )

n—oo
k=1

where up (k) = 1, if b divides k, and u (k) = 0, otherwise; that is,
=N
up(k) = ng{)k.
j=0

This completes the proof. O

Proposition 8.65 provides a first step in the search for an explicit expression for
Zg(4). Depending upon the function g, more computations may be necessary to
obtain a useful expression. In this respect, the derivation of formula (8.30) by means
of Proposition 8.65 can be found in Marichal [66, p. 13].

Example 8.66. Let us apply Proposition 8.65 to the function gs(x) = —x~%, where
s > 1. This function lies in D% N K° and we have Zg.(x) = ((s,x) — {(s); see
Example 1.7. Let a,b € N* with a <b. For j =0,...,b—1, we then have

SPlgs] = — b Lig(w)),
where
: = ZKk
Lis(z) = } 5
k=1

is the polylogarithm function. Using Proposition 8.65, we then obtain

C(s,%) = c(s)—bslbzl(1—wbai)Lis(w{,)
j=0
b—1

= b ) w, Y Lig(wl).
j=0

The inverse conversion formula is simply given by

b
Lis(w)) :b—SZw{,k(:(s,t), j=1,...,b—1. O

k=1
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8.11 Generalized Gautschi’s inequality

Gautschi [38] showed that the following double inequality holds for any 0 < a < 1

(a-1)h(xt+1) o Mx+a) < xol

< , 0.
€ MNx+1) b

As a consequence, since \(x) < Inx for any x > 0, he also obtained that

MNx+a)

7< a—1 >0
Mxt1) S5 0 X705

(X—l— 1)(171 g

which is also a straightforward consequence of the Wendel inequality (6.5). We refer
to these inequalities as the Gautscht inequality.

We now provide an analogue of Gautschi’s inequality for certain multiple logI'-
type functions and for any a > 0. We call it the generalized Gautschi’s inequality.
As usual, we use the additive notation.

Proposition 8.67 (Generalized Gautschi’s inequality). Suppose that g lie in €2 N
DP N Kmax{P2} for some p € N and let a > 0 and x > 0 be so that g is convez
on [x+ |a|,00). Then we have

(a—Ta])(£g)'(x+ [a]

(a—Tal)glx+[a]) < (x+ [a])
< glx+a)—Zgx+fa]) < (a—Tfa])glx+[a]).
(The inequalities are to be reversed if Xg ts concave on [x + |a],0).)

Proof. We follow the same steps as in Gautschi’s proof. We can assume that k < a <
k+1 for some fixed k € N. Let x > 0 be fixed so that £g is convex on [x +k, c0). Let
also f: [k,k+1) — R and ¢: [k,k+1) — R be the functions defined by the equations

1

fla) = 3 1=a

(Xg(x+a)—Zg(x+k+1))

and
¢(a) = (k+1—a)’*f'(a)

for k < a < k+ 1. We then observe that
(k+1—a)f'(a) = f(a)+Da((k+1—a)f(a)) = fla)+(Zg)'(x+ a).
It then follows that
e(a) = (k+1—a)(f(a) +(Zg)'(x + a))

and
¢'(a) = (k+1—a)(Zg)"(x+ a).

We also have

Tgx+k)—Zgx+k+1)+ (Zg) (x + k)
= (Zg)'(x+k)—glx+Xk),

p=3
ko
|
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where )

gx+k) = L (Zg) (x + k +t) dt.

Since X g is convex on [x + k, 00), its derivative is increasing on [x 4+ k, 00), and hence
we must have @ (k) < 0 and ¢’(a) > 0. Since @(k+1) = 0, it follows that the function
@ is nonpositive and hence that the function f is decreasing. Using L'Hospital’s rule
and the fact that ¢ (k) < 0, we then obtain the following chain of inequalities

—glx+k+1) < —(Zg)(x+k+1)
< lim f(a) € f(a) < f(k) = —glx+k).
a—k+1
This proves the result. O

Example 8.68. Applying Proposition 8.67 to g(x) = Inx and p = 1, we obtain for
any a > 0 and any x >0

_ _ IFx+a) _
x+ [a])erfel g elarfabwberfal) 22— < (x+ [a))* o],
(x+[a) FocrTar < (et La)
If we assume that 0 < a < 1, then we retrieve the original Gautschi inequality. %

Remark 8.69. If we wish to bracket the function Zg(x + a) — Xg(x + 1) in Proposi-
tion 8.67, we can use the identity

[a]—1
Zg(x+[a]) = Zgx+1)+ Z g(x + k),
k=1

which immediately follows from (5.3). For instance, for g(x) = Inx we obtain the
double inequality

MNx+a)
MNx+1)
< (x+ la))e el (x4 [a] —1)lel=t,

ela=fallwietTal)(x 4 [q] —1)fal=2

X

which holds for any a > 0 and any x > 0. O
We end this section with the following corollary, which is obtained by integrating
on a € (0,1) the expressions in the generalized Gautschi inequality (Proposition 8.67).

Corollary 8.70. Suppose that g lie in C2NDP NK2¥*P:2} and let x > 0 be so that
Yg s convez on [x,00). Then we have

—Sobctl) < 1 (59)(x+1)

x+1 1
< | rewar-zgnern < - gk,

X

(The inequalities are to be reversed if Lg is concave on [x,0).) In particular,
the following assertions hold.
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(a) If £g s not eventually identically zero and if

g(x)
xg%oZg(x) (8.31)
then
Y / x+1
lim M =0 and Xg(x) ~ J Zg(t)dt asx— oco.
e o) .

(b) If g is not eventually tdentically zero and if

lim LX—'—D = 1,
x—oo  g(x)
then
b EQV0) L [ Tg()dt—Tgl) 1
x—o0  g(x) X—00 g(x) 2

Proof. The inequalities are obtained by integrating on a € (0,1) the expressions in
the generalized Gautschi inequality. Let us now prove assertion (a); the second one
can be established similarly. If Xg is not eventually identically zero, then it eventually
never vanishes since it lies in K°. If condition (8.31) holds, then we must have

. Xg(x+1) g(x) g(x)
1 m — = ]. m 1 = d ]_ _—
x1—>oo Zg(x) x1—>oo < + Zg(x) an x1—>oo Zg(x + 1)

We then complete the proof by dividing all the expressions in the inequalities by
Yg(x + 1) and letting x — oo. O

8.12 Generalized Webster’s functional equation

In the framework of I'-type functions, Webster [98, Section 8] investigated the multi-
plicative version of the functional equation

f(x)+f(x+%) = h(x), x >0,

and, more generally, of the functional equation

m—1 .
Zf(x+J) = h(x), x >0,
. m
j=0

for any m € N*, where h: R, — R is a given function satisfying certain conditions.

In this section, we extend Webster’s result by considering and solving the more

general equation
m—1

) flx+aj) = h(x), x>0, (8.32)
j=
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where a > 0 is also a given parameter. We call it the generalized Webster functional
equation. For instance, we can prove that the unique monotone solution f: R, — R
to the equation

f(x)+f(x+a) = %

1 x+a 1 X
f) = m‘b( 2 >_2a¢(2a)'

Our general result is stated in the following theorem, a variant of which was
established by Webster [98, Theorem 8.1] in the special case when p =1 and a = %

is given by

Theorem 8.71 (Generalized Webster’s functional equation). Let p € N, m € N*,
a >0, and h € DI NXK9I for some integer q > p. Define also the function
hq: Ry — R by the equation

ha(x) = h(ax) for x > 0.

If Ahg lies in DPNKE NKI (resp. DP NKP NK9), then there is a unique solution
to equation (8.32) lying in XP, namely

f(x) = Zham (X“‘) — Tham (i)

am am

Moreover, this solution lies in XP (resp. X% ).

Proof. Suppose for instance that Ah, lies in DP N KXY NK9 and let gi*: Ry — R be
defined by the equation gJ*(x) = Ahq(mx) for x > 0. By Corollary 4.21, the function
gm lies in DP N KL NK9. Suppose that f: Ry — R is a solution to equation (8.32).
Then necessarily

m—1

ga'(x) = h(amx+ a) —h(amx) = ZA)-f(amx—Faj) = A f(amx).

]:
If f lies in XP, then by the uniqueness and existence theorems we have that
flamx) = f(am)+ Zggt(x)

and f must lie in KP. Since both g™ and h lie in D9 N K9, by Propositions 5.7 and
5.8 we then have

flamx) = f(am)+ X h(amx+ a) — Zh(amx)

1
flam) + Zxham <x + ) —Xham(x)
m

1
c+ Zham (X + ) - Zhum(x)r
m

or equivalently,

X+a X
f(x) = ¢+ Zham (am> — Tham (R> (8.33)
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for some ¢ € R. But the function f specified by (8.33) satisfies (8.32) if and only if
¢ = 0; indeed, we then have

m—1 m—1 XJr(lj
f(x+aj) = mC+ZAtham( am>
j=0 j=0
= M+ AZham (2] = me+hix),
am
This completes the proof. U

Example 8.72. Theorem 8.71 shows that the unique eventually monotone or even-
tually log-convex solution to the functional equation

fx)f(x +a)xP = 1, x>0,a>0,p>0,

ENERIC IR
fix) = (\/ﬁr x+a ) :

This result was established by Thielman [95] (see also Anastassiadis [5]). The special
case when p = 1 was previously shown by Mayer [70]. O

is the function

Combining both Theorems 8.27 and 8.71, we can derive immediately the following
corollary, which in a sense provides yet another characterization of multiple I'-type
functions. For a similar result on the gamma function, see Artin [11, p. 35].

Corollary 8.73. Letp € N, m € N*, and g € DPNKP L. Define also the function
gm: Ry — R by the equation gm(x) = g(5;) for x > 0. Then the function f = Lg
1s the unique solution lying in KP to the equation

m—1

Zf(?) Zm( )+ng() x> 0.
j=0

Example 8.74. For any m € N* the gamma function is the unique log-convex
solution f: R, — R, to the equation

m—1 .

r m—
Hf(X“) = TW o xso
o N M :

Equivalently, for any m € N* the gamma function is the unique log-convex solution
f: R, — R, to the equation

m—1 m—1 .
x+) H X+)
= r —_— -
f< > ]-:O ( L >, X>O <>

j=0
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Chapter 9

Summary of the main results

Now that we have collected a number of relevant results on multiple log I'-type func-
tions, we naturally look forward to applying them on various examples, including
not only special functions related to the gamma function but also many other useful
functions of mathematical analysis. Such applications will be discussed in the next
three chapters. But first and foremost, it is time to take stock of the new theory we
have developed and summarize what we have found and learned thus far.

This chapter is devoted to a review of the most interesting and useful results that
we have established in the previous chapters. These results are presented here as a
step-by-step plan in order to perform a systematic and efficient investigation of the
multiple log I'-type functions. We have tried to be as self-contained as possible, so
that the reader can skip Chapters 2 to 8 and make direct use of the summary given
in this chapter.

Remark 9.1. At many places in this book (e.g., in Proposition 5.18), we have made
the assumption that the function g (resp. g™ for some r € N*) is continuous to ensure
the existence of certain integrals. Although we can often relax this condition by
simply requiring that g (resp. g\™) is locally integrable, we have kept this continuity
assumption for simplicity and consistency with similar results where higher order
differentiability is assumed. O

9.1 Basic definitions

Let us recall a few useful concepts introduced in the previous chapters. For any
p € N and any S € {N,R}, we let D denote the set of functions g: R, — R having
the asymptotic property that

APg(x) = 0 as X —g 00.

For any p € N, we also let CP denote the set of p times continuously differentiable
functions from R, to R and we let XP denote the set of functions from R, to R
that are eventually p-convex or eventually p-concave, that is, p-convex or p-concave
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(see Definition 2.2) in a neighborhood of infinity. Recall also that the sets DE’s are
increasingly nested while the sets CP’s and KP’s are decreasingly nested, that is,

DE c DR, KPP KP, and CPFlcep for any p € N.
We have also proved in Proposition 4.8 that
DRNXP = DENXKP

and we denote this common intersection simply by DP N XP.

In Chapter 5, we have introduced the map X that carries any function g: R, — R
lying in the set

dom(z) = |J(DPnKP)
p>0
into the unique solution f: R, — R that arises from Theorem 1.4 and satisfies (1) =
0. That is,
Zg(x) = lim f¥Igl(x), x> 0.

n—oo
The class of functions that are equal (up to an additive constant) to Xg is called the
principal indefinite sum of g (see Definition 5.4 and Example 5.5). A function f
lying in the range of the map X is also called a multiple log I'-type function.

In the previous chapters, we have established and discussed several properties of
the multiple log I'-type functions, many of which are counterparts of classical proper-
ties of the gamma function. For instance, we have proved that every multiple logI'-
type function satisfies an analogue of Gauss’ multiplication formula for the gamma
function. In the rest of this chapter, we provide a summary of these properties. The
reader can use them for a systematic investigation of any multiple log I'-type function.

9.2 ID card and main characterization

The first step in this investigation is to choose a function g € DP N KP (for some
p € N) for which we wish to study its principal indefinite sum Xg. For instance, if
we consider the function g(x) = xInx, which lies in D2 N X?, then the function Zg is
the logarithm of the hyperfactorial function K(x) (see Section 12.5), that is

Yg(x) = InK(x) = (x—1)InT(x) —In G(x),

where G is the Barnes G-function. Our results will then enable us to study this
function through several of its properties.

Alternatively, we can start from a given function f € XP (for some p € N) that
we wish to investigate and whose difference g = Af is a function that lies in DP NXKP.
For instance, we may want to investigate the nth degree Bernoulli polynomial f(x) =
B..(x) by first observing that the function

n—1

g(x) = Af(x) = nx
lies in D™ NXK™. We then have
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Remark 9.2. To investigate a function f: Ry — R through our results, it is not
enough to check that the difference g = Af lies in DP N KP for some p € N. We also
need to make sure that f also lies in KP. For instance, both functions

fi(x) = x+ sin(27x) and fa(x) = x4+ 03(mx, 1/2),

where 03(u, q) is the Jacobi theta function defined by the equation

03(u,q) = 1+2 Z qn2 cos(2nu),

n=1

have the same difference g = Af; = Af; =1 in D! NXK?! (and we have Zg(x) = x—1).
However, neither f; nor f; lies in X*. O

ID card. It is convenient to start our investigation of the function Xg by collecting
some basic properties of the function g, thus establishing a kind of ID card for that
function.

Thus, we first consider a function g: Ry — R. We then determine its asymptotic
degree

degg = —1+min{qe N:ge DI}
= —1-+min{q € N:A%(x) = 0 as x — oo}.

If degg = oo (e.g., when g(x) = 2%) or if g ¢ KP for all p > 1+ degg (e.g.,
gx) =x+ %sin x), then the function Xg does not exist and the investigation stops
here. Otherwise, the functions g and Zg lie in DP NKP and DPT! NKP, respectively,
where p =1+ degg.

If degg = —1, it is important to check whether g also lies in the set DKIl of
functions g: R, — R for which the sequence n — g(n) is summable. In this case, by
Proposition 6.14 we have that

lim Tg(x) = } g(k).
k=1

It is also useful to determine the integer r € N, if any, for which g lies in €™ N
K=ax{P,r} In this case, we know from Theorem 7.5 that Zg lies also in this set.
Moreover, many functions of mathematical analysis lie in both

e* = ()€ and K* = []XP.

>0 p=0

If g lies in these sets, then we can write g € €®° N DP N K.

It may be also useful to determine the domain on which g is p-convex or p-concave.
For instance, the function g(x) = %lnx is O-concave on [e, c0), 1-convex on [e3/?, x0),
etc. (see Example 5.13).

Note that, at this stage, we may not yet have any simple expression for Xg. Limit

and series representations will later emerge anyway from our investigation.
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Analogue of Bohr-Mollerup’s theorem. The following characterization result
constitutes the analogue of Bohr-Mollerup’s theorem for the function g and follows
immediately from the uniqueness Theorem 3.1.

If f: Ry — R s a solution to the equation Af = g, then it lies in KP
if and only if f =c+ Zg for some c € R.

This characterization sometimes enables one to establish alternative expressions for
the function Lg. For instance, if g(x) = <, then we have

Ig(x) = ¥x) +v.

Using the characterization above, we can easily establish the following Gauss repre-
sentation (see, e.g., Srivastava and Choi [93, p. 26])

00 t

e t—eX

VY(x)+y = J dt, x > 0.

o 1l—et
Indeed, both sides of this identity vanish at x = 1 and are eventually increasing
solutions to the equation Af = g. Hence, by uniqueness they must coincide on R .

Note also that, in addition to the analogue of Bohr-Mollerup’s theorem above, we
also have an alternative characterization of £g given in Proposition 3.9.

9.3 Extended ID card

We now complement the ID card of the function g by considering some additional
related constants and mappings. From now on, we assume that g is at least continuous
on R, . More precisely, we assume that

g € €"NDP N xmaxip.)

for p =1+ degg and some r € N.
Recall also that, for any n € N, the symbols G;; and B,, denote the nth Gregory
coefficient and the nth Bernoulli number, respectively. We also let

n
Gn =1-) [G
j=1
and we let B;,(x) denote the nth degree Bernoulli polynomial (see Sections 6.3, 6.4,
and 6.7).
Asymptotic constant. Recall that the asymptotic constant associated with g (see

(6.10)) is the number

1 2
olgl = J Igt+1)dt = J Tg(t)dt.
1
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If g is integrable at 0, we also define the generalized Stirling constant (see Defini-
tion 6.17) as the number exp(clg]), where

1 1
olg] = oldg] —J g(t)dt = J Tg(t)dt.
Since this latter constant does not always exist (e.g., when g(x) = %), we do not use

it much in our investigation.
The asymptotic constant o[g] has the following limit, series, and integral repre-

sentations (see identities (8.11), (8.12), (8.21), and Corollary 8.45).

(a) If g lies in €% N DP N KP, then we have

P ) 0 k+1 P )
olgl = ) GAT'g(1)- ) J glt)dt— ) GjAig(k)
j=1 j=0

k=1

and
P
olgl = lim Zg J (Hdt+ ) GjAg(n)

n—00
j=1

(b) If g lies in €29 N DP N K39, where ¢ € N* U{%} and 0 < p < 2q — 1, then we

have
olal = J&(Zg K dt*ng“ )
(c) If g lies in €2 N D! N K2, then we have
olgl = 79(1)+f ({th—3) g'(t) dt.

(d) If g lies in €297 N DP N K291, then we have

q
olgl = Z

[ Bag([) o

We also know from Proposition 6.14 that if g lies in C°ND~1 NK? (here D! stands
for Dy'), then g is integrable at infinity and

= > gk - JOO g(t) dt.
k=1 1

Analogue of Raabe’s formula. The analogue of Raabe’s formula is simply the
identity (see (8.9))

x+1 X
J Yg(t)dt = olg] +J g(t)dt

X
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and we know by Proposition 8.20 that any of these integrals lies in C° N DPF1 N KP+L,
Recall also from Corollary 8.23 that a function f: R, — R lies in €° N XP and
satisfies the equation

x+1 X
J f(t)dt = G[g}—i—J g(t) dt, x >0,
1

if and only if f = Xg. This provides an alternative characterization of Xg.
Generalized Binet’s function. For any q € N, the generalized Binet function

associated with g and q is the function J9[g]: R} — R defined by the equation (see
(6.16))

X

q—-1 . x+1
Jgl(x) = Z:%A@W%j[ g(t)dt  for x > 0.
j=0

In particular, we also have (see (6.18))

X

q
g(t)dt+ ) G;A'g(x).

W“Emu):zmw—o@—J
j=1

1

Note that several objects and formulas of our theory can be usefully expressed in
terms of this latter function.

Generalized Euler’s constant. Recall that the generalized Euler constant associ-
ated with the function g is the number

vlgl = —JPTHZgl(D),

where p = 1 4 deg g (see Definition 6.34).

Note that, contrary to the asymptotic constant o[g], the generalized Euler constant
vlg] is not invariant if we replace p with a higher value. Besides, by definition of y[g]
both quantities are related through the following identity

P
olg) = vlg+ > G;A'g(1),
j=1

where p = 1 + degg (see Proposition 6.36). In particular, we have y[g] = olg]
whenever degg = —1.
We also have the following integral representations

o s P
vlgl = L (ZGjAjg(LtJ)—g(t)> dt
j=0

and

where
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is the piecewise polynomial function whose restriction to any interval (k,k+ 1), with
k € N*, is the interpolating polynomial of g with nodes at k,k + 1,...,k +p (see
Proposition 6.37 and Egs. (6.38) and (6.41)).

If g is p-convex or p-concave on [1, 00), then the graph of g is always over or always
under that of ﬁp [g] on [1,00) and |y[g]| is the surface area between both graphs. In
this case, we also have (see (6.45) and (6.46))

lylgll < Gy lAPg(1)|

and, if p>1

1
ylgll < L (tgl)'|Apflg(t+1)—Apflg(1)| dt.

9.4 Inequalities

Recall that, for any a > 0, the function pf[g]: [0,c0) — R is defined by the equation
(see (1.7))

p—1
PRlgl(x) = glx+a)— ) (})Agla)  forx>0.
j=0
In particular, we have
P
PR Igl(x) = Zg(x+a) )= () aig

j=1

Generalized Wendel’s inequality (symmetrized version). Let a > 0 and let
x > 0 be so that g is p-convex or p-concave on [x, c0). Then we have (see Corollary 6.2)

[P Zgl(a)] < [a]

(1) |1a7g (o)l
If p > 1, we also have the following tighter inequality

R HZgl(a)| <

(agl)’ |AP T g(x + a) — AP g (x)] .

This latter inequality is referred to as the symmetrized version of the generalized
Wendel inequality (see Corollary 6.2). Both inequalities reduce to equalities when
ae{0,1,...,pk

Now, for any n € N* we have (see (5.4))

PP Zgl(x) = Zg(x)—fRlgl(x),  x>0.

Using this identity, we immediately derive the following discrete version of the in-
equalities above. If g is p-convex or p-concave on [n,co), then

IZg(x) — fRIgl(x)] < []

(Sh]argmil, x>0,
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and if p > 1,

IZg(x) = fRlgl(x)] <

(9] 187 g(n 420 — av gy, x>0,

If g lies in D', then (see Proposition 6.14)
Yg(x) — Xg(oo) = Zg(k) as x — 00.
k=1

We then have the following additional inequality (see Theorem 3.13). If g is increasing
or decreasing on [n, c0), then

o]

Z glx+Xk)

k=n

= |Zg(x+n)—Zg(oo)| < [Xg(n)—Zg(oo)l, x > 0.

Generalized Stirling’s formula-based inequality (symmetrized version). If
x > 0 is so that g is p-convex or p-concave on [x,00), then we have the inequality
(see Corollary 6.12)

I Zgl(x)| < GplAPg(x)l.

If p > 1, we also have the following tighter inequality
1
g <[] ()@ gl 0 - gt ar.
0
Moreover, if p =0 or p = 1, then (see Proposition 6.19)

’Z9 <x+;>—o[gl—rg(t)dt’ < PPTHEG)]
1

Generalized Gautschi’s inequality. Suppose that g lies in €2NX?2. Let a > 0 and
let x > 0 be so that X g is convex on [x+|a|,00). Then we have (see Proposition 8.67)

(a—Ta]) (£g)'(x+ [a])

(a—Tlal)glx+Ta]) <
< Ig(x+a)—Zg(x+[a]) < (a—T[a])glx+ [a]).

(The inequalities are to be reversed if Xg is concave on [x + [a],c0).)

9.5 Asymptotic analysis

In this section, we gather the main results related to the asymptotic behaviors of
multiple log I'-type functions, including the generalized Stirling formula.

Generalized Wendel’s inequality-based limit. The following convergence result
immediately follows from the generalized Wendel inequality (see Theorem 6.1). For
any a > 0, we have

pP[Zgl(a) — 0 as x — 00,
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or equivalently,

P
Zg(x+a)— Z )ATlg — 0 as x — 00.
j=1

This convergence result still holds if we differentiate r times the left-hand side.

Generalized Stirling’s formula. We have (see Theorem 6.13)
JPHEZgl(x) — 0 as X — 00,

or equivalently,

X P
Zg(x)—J g(t) dt—l—ZGjAj_lg(x) — oldg] as X — 00.
1 i1

If g lies in €29 NDP NK?9, where q € N*U{3} and 0 < p < 2q — 1, then we also have
(see Proposition 8.39)

X P
Yg(x)— J'l g(t)dt— Z % g VY(x) — olg] as x — 00.
k=1

If p=0or p =1, we also have the following analogue of Burnside’s formula, which
provides a better approximation than the generalized Stirling formula (see Proposi-
tion 6.19)

_1
X—3

Xg(x)— L g(t)dt — olg] as X — 00.

All the convergence results above still hold if we differentiate r times both sides. In
particular, the function D"JP![Zg] vanishes at infinity.

Asymptotic equivalences. For any a > 0 and any ¢ € R, we have (see Proposi-

tion 6.20)
x+1

c+Xg(x+a) ~C+J Tg(t)dt as x — 00

x
(under the assumption that ¢ + Xg(n+ 1) ~ ¢ + Xg(n) as n —y oo whenever ¢ + Zg
vanishes at infinity). If g does not lie in Dy ! then we also have

X

Zg(x+a) ~ C+J g(t)dt as x — 00.
1

These equivalences still hold if we differentiate r times both sides; that is,
D'rg(x+a) ~ ¢V (x) as x — 00

under the assumption that D"Xg(n + 1) ~ D"Xg(n) as n —y oo whenever D"X
g g g
vanishes at infinity).

Asymptotic expansions. We have the following asymptotic expansions (see Propo-
sition 8.36).
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(a) If g lies in C' N DP N K™ax{P:1} then for large x we have

X

Zg(x) = olgl+ | g(t)dt— 3 glx) + Ra(x),

where

1
Ri(x)] < E\Q(XN-
b) If g lies in G29 N DP N KX™ax{P,2d} for some q € N*, then for large x we have
g q

g Y (x) + R (x),

Zg(x) = olgl+ | glt)dt—gx)+

where By |
RY (%) < (Q%S!I (2a=1)(x)|.

Asymptotic expansions of the more general function

for any m € N*, are also provided in Proposition 8.35.
Generalized Liu’s formula. The following assertions hold (see Proposition 8.42).

(a) If g lies in €2 N D! N K?, then we have

X

Yg(x) = G[g}—i—J g(t) dt—%g(x)—J0 ({t}—%) g’(x+t)dt.

1

(b) If g lies in €291 N D29 N K297 for some q € N*, then we have

X q

Sgl) = 0[91+L g(t) dt — 7 glx g%V (x)
* Bag(1t]) (aq) :
L 2q) g (x + 1) dt.

9.6 Limit, series, and integral representations

We now recall the different representations of multiple log I'-type functions that we
established in this work as well as the way we can generate further identities by
integration and differentiation.

Note that, in the special case when g lies in Dgl, both the Eulerian and Weier-
strassian forms coincide with the analogue of Gauss’ limit, i.e., we have

[o¢]

Y glk)— > glx+k),

k=1 k=0
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and the second series converges uniformly on R, (and tends to zero as x — 00).

Analogue of Gauss’ limit. By definition of Xg, we have

Yg(x) = lim f¥Igl(x), x > 0.
n—oo
This is precisely the analogue of Gauss’ limit for the gamma function. We have also
established that the sequence n +— fh[g] converges uniformly on any bounded subset
of R, to Xg (see our existence Theorem 3.6).

More generally, we have shown that the sequence n ~ DT} [g] converges uni-
formly on any bounded subset of R, to D"Zg (see Theorem 7.5). In particular,
both sides of the identity above can be differentiated r times (i.e., the limit and the
derivative operator commute).

Moreover, the function fh[gl(x) — Zg(x) can be (repeatedly) integrated on any
bounded interval of [0, c0) and the integral converges to zero as n — oo (see Propo-
sition 5.18 and Remark 5.19).

Eulerian and Weierstrassian forms. We have the following Eulerian form (see
Theorem 8.2)

P

G A g1 =) [gx+k) =) () Ag(k)
k=1

j=0

Igx) = —glx) +

P
):

1

We also have the following Weierstrassian forms if g € CP (see Theorems 8.5 and 8.7).

(a) f p=1+degg =0, then

0 k+1
Tg(x) = olgl—g(x)— )_ (9(X+k)—J g(t) dt)-
k=1 k
(b) If p=1+degg > 1, then
p—1 .
Igx) = Y (A1) +(5)(zg) (1)
j=1
00 p—1 )
—g(x) =) | glx+k) =) (5)Aglk)—(3)g® (k) |,
k=1 j=0

where (£g)P)(1) = gP~1)(1) — a[g(®)].

Each of the series above converges uniformly on any bounded subset of [0, 00) and
can be repeatedly integrated term by term on any bounded interval of [0, c0). It can
also be differentiated term by term up to r times.

Gregory’s formula-based series representation. We also have the following
series representation (see Proposition 8.11). Suppose that g lies in X* and let x > 0
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be so that for every integer q > p the function g is g-convex or g-concave on [x, c0).
Suppose also that the sequence q — A9g(x) is bounded. Then we have

Ig(x) = olgl +L g(t)dt— Y GnA™'g(x).
n=1

Moreover, if these latter assumptions are satisfied for x = 1, then we also have the
following analogue of Fontana-Mascheroni’s series representation of y

olgl = ) GnA™g(1).
n=1

Integral representation. We have seen that an integral expression for Xg can
sometimes be obtained by first finding an expression for £g(*) when r > 1. This is
the elevator method (see Corollary 7.20).

We have
(£9)" — 2" = ¢ (1) —olg™]
and, if r > p,
o0
olg™] = g" M)+ ) ¢" (k).
k=1

Moreover, for any a > 0, we have
29 = fa_fa(l)y

where f, € C" is defined by

(Zg)(t) dt

x —a)k +JX (x —t)7 1!

r—1
fab) = Y enla) X5 =
k=1 ’ a ’

and, for k=1,...,r—1,

r—k—1

i . a+1 _ $\r—i—k
cla) = Y (g““—”(a)—j S dt).
25 . i

9.7 Further identities and results

In this section, we collect the remaining identities and results that may be relevant
in our investigation of multiple log I'-type functions.

Analogue of Gauss’ multiplication formula. Let m € N* and define the function
gm: Ry — R by the equation g, (x) = g() for x > 0. Then we have the following
analogue of Gauss’ multiplication formula (see Section 8.6)

m—1 ) m ]
O e (x + m) = Zl g <m) + Zgm(mx), x >0,
= j=

)
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where
1

Y 1g (Tjn) = molg] — olgm] —mJ g(t) dt.
j=1

1/m

We also have

m—co m

and, if g is integrable at 0,

1 X
lim —Xgm(mx) = J g(t) dt, x> 0.

m—oo 1M
A related asymptotic result is also given in Proposition 8.30.

Analogue of Wallis’s product formula. We present here in a single statement the
analogue of Wallis’s product formula as given in Proposition 8.49 and Remark 8.53.
Let J1, §2, §3: R+ — R be the functions defined respectively by the equations

gi1(x) = Ag(2x—1), Ga(x) = Ag(2x), §s(x) = 29g(2x), forx>0.

We assume that §, lies in K° for some ¢ € {1, 2, 3.
Let also 01, 02, 03: N* — R be the sequences defined respectively by the equations

n+1 (p—1)+ .
6r(n) = a[gl]+J Gdat— Y G A gn+1),
1 P
n (p—1)+ )
02(n) = g(2n)—g(1)—(r[§2]—J1 Gz (t) dt + Z Gy A 1gz(n),
=1
. j
O3(n) = G[gg]—a[g]—l—J.(g(2n+t)—g(t))dt
1

P
+) Gj(A'g(2n+1) —A gz (n+1)),
j=1

for n € N*. Then we have

2n
lim (h(n)+z(—1)“g(k)> =0,

k=1

where h(n) is the function obtained from the series expansion for 8,(n) about infinity
after removing all the summands that vanish at infinity.

Restriction to the natural integers. The restriction of Xg to N* is the sum
(5.2). This sum can be estimated, e.g., by means of an integral through Gregory’s
summation formula (6.33) with a bounded remainder (6.37). The representations of
Y g given above can also lead to interesting identities when restricted to the natural
integers.
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Analogue of Euler’s series representation of y. When g lies in €*° N K>, the
following series (see (7.4))

1
(k+1)1°

olgd = ) (Zg)™(1)
k=1

when it converges, provides an analogue of Euler’s series representation of y. It is
obtained by integrating term by term the Taylor series expansion of Xg(x + 1) about
x =0.

Generalized Webster’s functional equation. This result can be found in Theo-
rem 8.71.

Analogues of Euler’s reflection formula and Gauss’ digamma theorem.
These topics are discussed in Sections 8.9 and 8.10.



Chapter 10

Applications to some standard
special functions

We now apply our results to certain multiple I'-type functions and multiple log I'-type
functions that are known to be well-studied special functions, namely: the gamma
function, the digamma function, the polygamma functions, the g-gamma function,
the Barnes G-function, the Hurwitz zeta function and its higher order derivatives,
the generalized Stieltjes constants, and the Catalan number function. For recent
background on some of these functions, see, e.g., Srivastava and Choi [93].

Each of these examples is examined and studied systematically by following the
steps and results given in the previous chapter. When algebraic computations become
tedious, a computer algebra system can be of great assistance in executing the details.
Further examples will be discussed in the next two chapters.

In this chapter and the next, we occasionally address and solve some secondary but
interesting issues. They are then presented and numbered in a Project environment.

Most of the applications we consider in this work illustrate how powerful is our
theory to produce formulas and identities methodically. Although many of these
formulas and identities are already known, to our knowledge they had never been
derived from such a general and unified setting.

10.1 The gamma function

Since the Euler gamma function was the starting point of this theory and therefore
also Webster’s motivating example in his introduction of the I'-type functions, it is
natural to test our results on this function first.

The following investigation of the gamma function does not reveal quite new
formulas. However, it can be regarded as a tutorial that clearly demonstrates how
our results can be used to carry out this investigation in a systematic way.

In addition to the remarkable book by Artin [11], the interested reader can also
find a very good expository tour of the gamma function in Srinivasan’s paper [92].

151
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ID card. The following table summarizes the ID card corresponding to the log and
log-gamma functions.

g(x) | Membership |degg | Zg(x)
Inx | C*NDINK®| 0 |InT(x)

Bohr-Mollerup’s theorem. A characterization of the gamma function is given
in Bohr-Mollerup’s theorem (see Theorem 1.1 and Example 3.2). In the additive
notation, we have the following statement.

All eventually convex or concave solutions f: R, — R to the equation
f(x+1)—f(x) = Inx
are of the form f(x) = c+InT(x), where c € R.

Using Proposition 3.9, we can also derive the following alternative characterization of
the gamma function (see Example 3.11).

All solutions f: R — R to the equation
f(x+1)—f(x) = Ilnx
that satisfy the asymptotic condition that, for each x > 0,
f(x+n)—f(n)—xlnn — 0 as N —y 00

are of the form f(x) =c+InT(x), where c € R.

Extended ID card. The value of o[g] has been discussed in Example 6.5. More
precisely, we also have the following values:

olg] olg] vlg]
2In(2n) | —1+ £ 1n(2m) | vlg] = olg]

e Inequality
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e Alternative representations of olgl = ylg]

olgl = ro ({t}ln Y )m M) dt,
1

t t

olgl = T}g%o(lnn!+n—1—(n+;)lnn),
olg = i(l—<k+1>ln<1+l>>,
= 2 k

olg = (;ln(mz—k[tj)—lnt)dt,
1
U
olgl = l, . dt,
rl
olgl = InT(t+1)dt.
JO

e Binet’s function

JPllnol(x) = J(x) = InT(x)— % In(27) +x — (x— ;) Inx, x> 0.

e Raabe’s formula

x+1 1
J InT(t)dt = 51n(27‘[)+x1nx—x, x > 0.

X

e Alternative characterization. The function f(x) = InT'(x) is the unique solu-
tion lying in €° N X! to the equation

x+1 1
J f(t)dt = 5 In(27) + xInx —x, x> 0.

Inequalities. The following inequalities hold for any x > 0, any a > 0, and any
n € N*.

o Symmetrized generalized Wendel’s inequality (equality if a € {0, 1})

|InT(x+a)—InF(x) —alnx| < [a—1In (1+9),
X

8 e R < (09"

o Symmetrized generalized Wendel’s inequality (discrete version)

n—1 n—1
InT(x) — Zlnk—i— Zln(x+k) —xlnn| < |x—1/1In <1+ %) :
k=1 k=0

(1+3) e R < (1 )T
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o Symmetrized Stirling’s formula-based inequality

gl < B (14 ) 22 <t (14]),

1 1
1\ 2 r 1\
<1+) O (1+) :
X Vame Xx*"2 X

e Burnside’s formula-based inequality

1 1
InT <x+ 2) — 51n(27t) +x—xlnx| < [J(x)].
o Generalized Gautschi’s inequality
IMNx+ a)

(x4 [a])eTal g elaTalbierlal) ) < (x+ |a))eTel,

I(x+[a]
Stirling’s and related formulas. For any a > 0, we have the following limits and
asymptotic equivalences as x — oo,

InT(x+a)—InT(x)—alnx — O,

lnr(x)—%ln(ZTt)—i—x— (x—é) Inx — 0,

1 1
1nF<x+ 2> —§ln(27r)+x—x1nx — 0,
MNx+4+a) ~ x*T(x), InT(x+a) ~ xInx,
M(x) ~ vVome *x* 3, Nx+1) ~ V2mxe *x*.

Burnstide’s approzimation (better than Stirling’s approximation)

e

x—1\¥?
I'(x) ~ Vo ( 2 > .
Further results (obtained by differentiation)

P(x+a)—P(x) — 0, P(x) —lnx — 0, P(x+a) ~ Inx,

(k—1)!

br(x+a) ~ (-1 <K

) lbk(x) — 0, ng*

Asymptotic expansions. For any m,q € N* we have the following expansion as
X — 0

1 j 1 1
— InT x—i—i = —In(2m) +xlnx —x— —1Inx
m 4 m 2 2m

q

Bit1 —q-1
+l;k(k+1)kak+l+O(X ) -
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Setting m = 1 in this formula, we retrieve the known asymptotic expansion of the
log-gamma function InT'(x) as x — oo (see, e.g., [93, p. 7])

1 1 1B
InT(x) = 51n(27r) — X+ (x— 2) Inx 4+ Z ﬁ +0 (qufl) ,  (10.1)
k=1

or equivalently,

For instance, setting ¢ =4 in (10.1) we get

InT(x) = ;111(27'[)—X+<X—1> lnx—i——

Generalized Liu’s formula. For any x > 0 we have

1 1 -t
InT(x) = 51n(2m —x+ (x 2> 1nx+J Zt +{X} dt,
0

or equivalently,

Jx) = dt.

Jw;—ﬁ}
0 t+x

Limit, series, and integral representations. We now consider various represen-
tations of InT'(x), including the Eulerian and Weierstrassian forms.

e Eulerian form and related identities. We have

InT(x) = —lnx—Z <ln(x+k) —Ink—xln <1+ i)) ,

k=1

Upon differentiation and integration, we obtain (cf. Example 8.3)

1 & 1 1
b = xkl<x+k1n<”k)>’

Pr(x) = (1) TKIg(k+1,x), keN,

P_ao(x) = xfxlnxfz ((X+k)ln(1+§) —xfgln <1+]1<)>

k=1
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o Weierstrassian form and related identities. We have
s X
InT(x) = —yx—Inx— ( lnk— ,)
nl(x) yx—Inx Z In(x+k)—Ink <)
k=1
e Y 2 ek
Nx) = .
X ]!:[1 1+ %

Upon differentiation and integration, we obtain (cf. Example 8.8)

1 = 1 1
Sl

P(x) =
At
P_(x) = — ﬁ —i—x—xlnx—i (x+k)In (1—1— E) — X — ﬁ
2= T Z K 2k
e Gauss’ limit and related identities. The Gauss limit is
n—1
InT(x) = lim <1n(n -1 — Z In(x + k) + xlnn) .
n—oo s

Upon differentiation and integration, we obtain
n—1 1 >

v = g (-3
‘LI)k(X) = (_1)k+1k! C(k-f—l,X), keN*;
X2 n—1
nx—xlnx+(1nn)2—Z(x+k)ln(1+k)>. (10.2)

= lim

Poa(x) = (
n—o00
k=1
The multiplicative version of Gauss’ limit reduces to the following formula (just

replace n with n 4 1 and note that (n +1)* ~n* as n — o0)
n!nx

Fx) = T}i—lgox(x—&-l) - (x4+m)

as stated in (1.6). We also have the following alternative form of Gauss’ limit,

which immediately follows from the Weierstrassian form
nlexw(n)
c(x+n)

n
1_[1 x T T}E;%OX(X-F].)"

This latter limit can also be derived immediately from Gauss’ limit and the

well-known fact that P(x) —lnx — 0 as x — oo.
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o Integral representation. Considering the antiderivative of the digamma func-
tion @ = 1 as the solution to the equation A@ = ¢’ (using the elevator method),
we obtain

InT(x) = $_s(x) = rw(t) t.

o Gregory’s formula-based series representation. For any x > 0 we have the
series representation (see Example 8.12)

Inl(x) = %111(271) —x+xlnx— Y Gny1A™n(x) (10.3)
n=0
= 1n(27'c)—x+x1nx—Z|Gn+1| Z ln (x + k).

Setting x = 1 in this identity yields the following analogue of Fontana-Mascheroni
series

1
Z|Gn+1| Z M in(k+1) = — 1+ In(2n).

Gauss’ multiplication formula. For any m € N* and any x > 0, we have

m—1

IIr (ﬁ:’) = (2177 ma T (x).
j=0

Corollary 8.33 provides the following asymptotic equivalence for any x > 0

s

Mmx)m ~ e *x*m* as m —y 00,

which also follows from Stirling’s formula.
Wallis’s product formula. We have the following limits

. 1-3- (2T1— 1)
llm —_—
n—soo 2-4- (

2n
: 1 k—1 _
nlg]?)o (2 In(7tn) + Z(—l) 1nk> = 0.

k=1

\/E_

Restriction to the natural integers. We have the well-known identity
Nn+1) = nl, neN.

Gregory's formula states that for any n € N* and any q € N we have

q
Inn! = 1-n+(nm+1)khn-) Gj((A'n)n)— (A n)(1)) —RY,
j=1
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with

Rl < Gql(A91n)(n) — (A%1n)(1)].

Moreover, Eq. (10.1) yields the following asymptotic expansion as x — co. For any
q € N*, we have

1 d Byri1 L
Inn! = fln(27'm)—n+n1nn+27k+0(n a1y,
2 = k(k+1)n

Similarly, Eq. (10.3) yields the following series representation

1 [o¢]
Inn! = 51n(27‘c)—n—i—(n—l—l)lnn—ZGkHAkg(n), n € N*,
k=0

We also have Liu’s formula

1 - t
Inn! = *1n(2ﬂn)*n+nlnn+J 27{}dt.
2 N t

Many other representations of Inn! can be derived from, e.g., the limit and series
representations of the log-gamma function described above.

Generalized Webster’s functional equation. For any m € N* and any a > 0,
there is a unique solution f: R, — R, to the equation

m—1

H f(x +aj) = x

j=

such that In f lies in X° (or in X'), namely

—
x
4+
=]

f(x) = (am)™

Analogue of Euler’s series representation of y. The Taylor series expansion of
InT(x+ 1) about x =0 is

InT(x+1) = —yx—&—Z@(—x)k, x| < 1.
k=2

Integrating both sides of this equation on (0, 1), we obtain (see Example 7.16)

> 1 1 1
é(—nkm C(k) = Sy—1+;mn(2m).

Reflection formula. For any x € R \ Z, we have I'(x)"(1 — x) = mtcsc(mx).
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10.2 The digamma and harmonic number functions

Let us now see what we get if we apply our results to both the digamma function
x — P (x) and the harmonic number function x +— H,. Recall first that the identity

fol = II)(X) +v
holds for any x > 0.

ID card. We have the following data about the functions 1/x and 1(x):

g(x) | Membership | degg 2g(x)
1/x [C*NDONK® | —1 |Hy_1=0Px)+7vy

Analogue of Bohr-Mollerup’s theorem. The digamma function can be charac-
terized as follows.

All eventually monotone solutions f: R, — R to the equation

1
flx+1)—"f(x) = =
X
are of the form f(x) = c+P(x), where c € R.
It is noteworthy that this characterization immediately follows from the basic
version when p = 0 of our Theorem 1.4, which was established by John [49].

Interestingly, this characterization enables us to establish almost instantly the
following identities for every x > 0,

b1
Hy 1 = b(x)+v = J g dt.
0
Indeed, each of the three expressions above vanishes at x = 1 and is an eventually
increasing solution to the equation f(x + 1) — f(x) = 1/x. Hence, they must coincide
on R,. We can actually prove many other representations similarly; for instance, the
following Gauss and Dirichlet integral representations (see, e.g., [93, p. 26])

00 eft efxt
P(x) = J (t_l—e—t)dt’ x > 0,

< 1 dt
'L')(X) = J'O (e —W)t, x > 0.

Kairies [51] obtained a variant of the characterization of the digamma function
above by replacing the eventual monotonicity with the convexity property. This
variant is also immediate from our results since g also lies in D* N XK.

Using Proposition 3.9, we can also derive the following alternative characterization
of the digamma function.
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All solutions f: R, — R to the equation

flx+1)—f(x) = =
X
that satisfy the asymptotic condition that, for each x > 0,

f(x+n)—fn) — 0 as N —y 00

are of the form f(x) = c+P(x), where c € R.

Extended ID card. We already know that o[g] =y (see Example 8.19). Hence we
have the following table:

olgl | olgl | vld]
© | v | v

e Alternative representations of olgl =vylgl =y

k=1 k=1
© /1 1 1 [e{t}—1
= — - )dt = Z— 2 dt
Y L (LtJ t) 2 L t2 ’
1
0

o Generalized Binet’s function. For any q € N and any x > 0
q
JUl(x) = b(x) —Inx+ Y [Gj|B(x,j),
j=1
where (x,y) — B(x,y) is the beta function.

e Analogue of Raabe’s formula (see Example 8.19)

x+1
J P(t)dt = Inx, x > 0.

X

o Alternative characterization. The function f =1 is the unique solution lying
in C° N X° to the equation

x+1
J f(t)dt = Inx, x > 0.

X

Inequalities. The following inequalities hold for any x > 0, any a > 0, and any
n e N*.
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o Symmetrized generalized Wendel’s inequality (equality if a € {0, 1})

x| =

Wx+a) =) < [a]

e Symmetrized generalized Wendel’s inequality (discrete version)

n—ll n—1 1
X)+vY— =+
\CER R

< (x}%

o Symmetrized Stirling’s and Burnside’s formulas-based inequalities

1
‘1]) <x + > —Inx
2
Considering for instance the value p = 1 in Corollary 6.12, we see that the latter
inequality can be refined into

1
< W(x) —Inx| < =

1 1 1
A xS PR S moTy

o Generalized Gautschi’s tnequality

a—[a]
x4+ [a]’

a—[a]
x+ |aj

< b(x+a)=P(x+[a]) < (a—Tfa])Pi(x+[a]) <

Generalized Stirling’s and related formulas. For any a > 0, we have the fol-
lowing limits and asymptotic equivalence as x — oo,

P(x+a)—P(x) — 0, P(x) —lnx — 0, P(x+a) ~ Inx.

Burnside-like approzimation (better than Stirling-like approximation)
1
P(x) —1n X3 — 0.

Further results (obtained by differentiation)

(k—1)!
XK

'lj)k(X-i-(l) ~ (_1)k71 ) Ibk(x) — 01 k € N*.

Asymptotic expansions. For any m,q € N* we have the following expansion as

X — 0

¥ j I (—1)% 1By -
le)(X"f’m) = 1nX+Zw+O(X q ) (104)
j k=1

j=

1
m
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Setting m = 1 in this formula, we retrieve the known asymptotic expansion of 1(x)
as x — oo (see, e.g., [93, p. 36])

or equivalently,

For instance, setting q =5 we get

1 1 1
= Inx————+ —— ).
b0 = Inx— ol foe F iaga FO )
Generalized Liu’s formula. For any x > 0 we have
1 (* {3
— lnx— — WTa
wix) 1Y ox +L (t+x)?

Limit and series representations. Let us now examine the main limit and series
representations of the digamma function that we obtain from our results.

e Eulerian and Weierstrassian forms. We have

1 & /1 1
o = v+ (o)
k

=1

P(x) = i+z<1n(1+i>xik>.

k=1

Upon differentiation, we obtain
Pr(x) = (=D Tk ¢(k+1,x), k € N*.

Moreover, integrating the Eulerian (resp. Weierstrassian) form of the digamma
function on (0,x), we retrieve the Weierstrassian (resp. Eulerian) form of the
log-gamma function.

e The analogue of Gauss’ limit coincides with the Eulerian form.

o Gregory’s formula-based series representation. For any x > 0 we have the
series representation

P(x) = Inx— ) |Gn|B(x,n) = 1nx—ZJﬁjL1).

n=1 n=1 11( n
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Setting x = 1 in this identity, we retrieve the Fontana-Mascheroni series (see,
e.g., Blagouchine [20, p. 379])

n=1

Setting x = 2, we get

= |G
1-In2 = ) |:|1
n

n=1

which is consistent with the identities given in Example 8.16.

Analogue of Gauss’ multiplication formula. For any m € N* and any x > 0, we
have (see, e.g., Berndt [18, p. 5])

m—1

i b (X+ ;1) = m(p(mx) —Inm) (10.5)
j=0
and
m—1
Z Hyivj/m = m(Hmxim-—1—Inm).
j=0

Corollary 8.33 provides the following formula for any x > 0

lim (Hpnx1 —Hm_1) = Ilnx.
m—0o0

Analogue of Wallis’s product formula. The analogue of Wallis’s formula reduces
to the classical identity

1
) (—1)* s = 2.
k=1
Project 10.1. Find the analogue of Wallis’s formula for the function g(x) = P (x).
We apply our method (see Section 9.7) to the function

§x) = Agl2n) = o

Thus, we get

h(x) = 1b(2n)—1b(1)—%y—%lnn = %(y+1n(4n))+0(n’l),

and the analogue of Wallis’s formula for g(x) = {(x) is

2n
lim <1n(4n)+2Z(1)k¢(k)> = .
k=1

This provides yet another formula to define Euler’s constant y. O
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Restriction to the natural integers. For any n € N we have

- L

Gregory’s formula states that for any n € N* and any q € N we have

q
. 1
Hyn1 = ]-nn_Z'G]l (B(n)J)_J> _R‘(r]l’
j=1
with

RAl <

7\“\'—‘

B(n,q+1)—1’.
q
Many representations of H,, can be derived from, e.g., the limit and series represen-
tations of the digamma function described above. For instance, using the generalized
Liu formula, we get (see also Remark 8.47)
00 1 1
Hn—-Mn+Y+2n+J{i 2“-—1“+;+51—L{i2 dt

Generalized Webster’s functional equation. For any m € N* and any a > 0
there is a unique eventually monotone solution f: R, — R to the equation

m—1
f(x+aj) = =,
X
j=0
namely
1 x+a 1 X
fx) = w( )w() .
am am am am
Analogue of Euler’s series representation of y. We have (1) =
Pi(l) = (-1

—y and
Kk + 1), k € N*.

Thus, the Taylor series expansion of P(x + 1) about x =0 is

He = wx+1)+y = ) (D5 'gk+1)
k=1

Ix| < 1.
Integrating both sides of this equation on (0, 1), we retrieve Euler’s series represen-
tation of y

°°c
ZT-

Analogue of the reflection formula. For any x € R \ Z, we have

Y(x) = (1 —x)

— mtcot(7tx).
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10.3 The polygamma functions

We now investigate the polygamma functions 1, for any v € Z. In this context,
our results will prove to be particularly interesting when v < —2, that is, when the
function 1, has a strictly positive asymptotic degree.

For any v € Z, we set gy = AY+; hence we have g/, = gv4+1 and ¥, = Py41. It
follows immediately that

Igv(x) = dby(x) =y (1).

(The cases v = 0 and v = —1 correspond to the functions 1 (x) and InT'(x), respec-
tively, and have been already considered in the previous sections.) We will often deal
with the cases v > 1 and v < —1 separately. In the latter case, we will often consider
the value v = —2 for simplicity and brevity.

ID card when v > 1. Here we clearly have

1 y V!
Xy T (—1) o

and (see Example 7.6)
Yy(1) = (=)YHIg(v +1).

Hence we have the following table.

gv(x) Membership | deg g+ 2gv(x)
(=1)VviIx vVl eenDInK® | —1 |VP,(x)—1P(1)

ID card when v < —1. Using (8.9), we obtain the following recurrence to compute
the functions g. For any integer v < —1, we have

x+1 x 1
gosl) = [ wa = [gwars | wwa

x 0 0

j gu(8) dt £ y_y (1),

0

In particular,
1
fim gv5(x) = bus(l) = [ v
x—0 0
Unfolding this recurrence, we obtain g_;(x) = Inx and, for any integer v < —1,

—v—1 Xj

X (X_t)fvfl
g\/fl(x) = J'o m Intdt+ ];0 IJ)VJrjfl(]-) ]’7!’ (106)

which is precisely the (—v — 1)th order Taylor expansion of g_1(x).
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Thus, we have

gfl(x) = Inx,
1
g2(x) = xlnx—x+ §1n(27r),
1, 3, 1 1
g-s3(x) = 5 X Inx 2 X +(2x—|—4) In(27) + In A.
Hence the following ID card
gv(x) Membership deg g+ 2gv(x)

Eq. (10.6) | C®NDVNXK>® | —v—1| ¥y (x) — (1)

Analogue of Bohr-Mollerup’s theorem. The function 1\, can be characterized
as follows.

All solutions f: R.. — R to the equation f(x+1) —f(x) = g (x) that lie
in K=Y+ are of the form f(x) = cy + 1 (x), where ¢y, € R.

When v > 1, this characterization enables us to prove easily the following integral
representation of V-,

0 4v ,—xt
oo = (vt B g, xso
o 1—et 7

Indeed, both sides of this identity coincide at x = 1 and are eventually monotone
solutions to the equation Af = g,. Hence they must coincide on R .

Extended ID card. The asymptotic constant o[g-] satisfies the following identity

1
olgu] = J Py (t+1)dt—py (1) = gy 1(1) =y (1).

0

Moreover, if v > 1 we also have

olgvl = vlgvl = ng(k)—J gv(t) dt

and hence the following values

Glgv] olgy] v(gv]
oo | (=1)YT(v)(vi(v+1)—1) | vlgy] = olg.]

For v < —1 we have the values

0-[9\/} G[gv] Y[gv]
Py 1 (D) =y (1) | gv—1(1) =+ (1) | olgy] — Z;zvl GjAjilgv(l)
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_ 1
olg—2] = InA—Zln(27r)
and

olg_2] =

1
= InA+ Zln(27t) — Z,
Ylg-2l =

1 1
InA+—-In2— .
nA+ 6 n 3
We also have the following identities

e Alternative representations of olg]

(=v)+ [e's] (—v)+ )
olgy] = Gy AITlg Z Agy1(K)— Y GjAgy(k) |,
j=1 k=1 j=0

(—=v)+ )

olgv] = 135%0 ng )+ 9gv—1(1) = gv_1(n) + Z G]' AJ_lgv(n) )
j=1
(=v)+ B:

olg,] = lim ng )+ gva(l)—gvam)— )

If v>1, then

]'7' Ov+j—1 (Tl)
j=1

vl *{t}—3
lgv] = (—=1)V V! (2 —(v+ 1)J1 tv+22 dt) .
If v < —1, then for any integer q
_i Bak
2

* Baq({t)
— (2K gv+2k—1(1) —L ?gq)! Gv42q(t) dt.

= (_V/zk
olgv] = %gv

e Representations of ylg]

v(g+]

’

(=v) 4+ )
olgvl — Y GA gy (1
j=1
.

00 (—v
Yigv] = L ( G; N gv([t]) — gv(t)) dt,
00 (—v)+
yigy]l = J <{F}> Ng,([t]) —gv(t) | dt.
1 i—o )

e Generalized Binet’s function. For any q € N and any x > 0

— -

-
Il
<}

q
JUHL(X) = Pv(x) = gv1(x) + ) Gj AT gy (x).

j=1
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For instance,

P_o(x) — % (x+1)In(x+1)+ % (3x —1)2

1 1
— Ex(fo 7)lnx — 5)(111(2717) —InA.

Il _2](x)

e Analogue of Raabe’s formula
x+1
[ e = g, xs0
X

o Alternative characterization. The function f = 1, is the unique solution lying
in €N K(V)+ to the equation

x+1
J f(t)dt = gv_1(x), x> 0.

X
Inequalities when v > 1. The following inequalities hold for any x > 0, any a > 0,
and any n € N*.
o Symmetrized generalized Wendel’s inequality (equality if a € {0, 1})

|
Wyv(x+a) —dy(x)] < [a‘I#

o Symmetrized generalized Wendel’s inequality (discrete version)

n—1 n—1
Py() =y (1) = ) gv(k)+ ) gvx+Kk)| < Mni—!ﬂ-
k=1 k=0

o Symmetrized Stirling’s and Burnside’s formulas-based inequalities

[y (x+3) —gv-1(¥)] < v(x) = gv10)| < lgv(x)].

Considering for instance the value p = 1 in Corollary 6.12, we see that the latter
inequality can be refined into

1

() = gua(x) 4 S gulo)| < 3 lagu (ol

e Additional inequality

Wy (x+n)| = < Ny (n)].

D gv(x+Kk)
k=n

o Generalized Gautschi’s inequality

(=1 Ha—[a]) $v+1(x + [a]) (1" (v (x +a) =y (x + [a]))

(=1)¥"*a—Ta]) gv(x+ la]).

NN
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Inequalities when v < —1. The following inequalities hold for any x > 0, any
a >0, and any n € N*.

o Symmetrized generalized Wendel’s inequality (equality if a € {0,1,...,—V})

Py (x+a) =Py (x) — (;1) Aj_lgv(x)

=1
| (c:i}) ‘ |A_V_19V(X +a)— A_V_lgv(x)‘
[al [(Z0)[]Agv ()]

<

<
<

e Symmetrized generalized Wendel’s inequality (discrete version)

N)v (x) =Py (1) — fﬁv[gv] (X)‘ ‘ (X,ivl) ‘ |A_V_19V(X +n)— A_V_lgv(n)‘

<
< DDA gv ()],

where

n—1 n—1 —v
Y090 = D gy =) gvlx+K)+ ) (5) A tgu(n).
k=1 k=0

j=1

o Symmetrized Stirling’s formula-based inequality

Py (x) = gv-1(x) + ) GjA gy (x)
j=1

1
[(CONATgux+ 1) —A7 gy ()]t
0

N

< Gy |A_V9V (x) ’

e Generalized Gautschi’s tnequality

Considering the function \_5, we obtain

(a—=Ta)b_1(x+[a]) Poa(x+a) = _o(x+[a])

<
< (a—Ta])g2(x+a)),

for any x + |a] > xp, where xo = 1.461... is the unique positive zero of the
digamma function.

Generalized Stirling’s and related formulas when v > 1. For any a > 0, we
have the following limit and asymptotic equivalence as x — oo,

-, Py(x) — 0.

Yy(x+a) ~ gv-ai(x) = (-1)
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Burnside-like approzimation (better than Stirling-like approximation)
Py (%) = gv—1(x — %) — 0.

Generalized Stirling’s and related formulas when v < —1. For any a > 0, we
have the following limits and asymptotic equivalence as x — oo,

—v

Uv(x+a) =y (x) =) (§) A Tgu(x) — 0,

j=1

Py (x) — gv_1(x) + Z G]'Aj_lgv(x) — 0,

j=1

o
Wy () = 3 Gverma(x) = 0,

k=0
1
II)'V(X + (1) ~ g'\/fl(x) ~ (__V)! Xiv ]'nX‘
When v = —2 for instance, these limits reduce to
x+a xX (X+ 1)X+l
x
1 1
P_o(x) — 3 (x+1)In(x +1) —|— — (3x— 1)?
1 1
— —x(6x—T7)lnx — =xIn(27) — InA,
12 2

1 1 1
—(6x2 —6x+1)Inx + - (3X—2)X—§X111(27T) — InA,

Poz(x) — 12

1
P_o(x+a) ~ §x21nx.

Asymptotic expansions. For any m,q € N* we have the following expansion as
X — 00

1 m—1 . q B
Ly (x+ ;1) = 3 i 9okt Olgura ().
=0 =0

Setting m = 1 in this formula, we obtain

Z k! Jv+k— l )+O(gv+q(x))

For instance the asymptotic expansion of \_5 is

1 1 1
P_s(x) = —(6x2 —6x+1)lnx — Z(Bx—Z)x—i— 5)(111(27’[) +InA

1

+7202+O( ).
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Generalized Liu’s formula. For any v > 1 and any x > 0 we have

oo 1 _
Py(x) = (=) IT(v) <22);V++II+V(V+1JJO (JEQ_'_X){:C,{Lth).

For v = —2 and any x > 0 we have
1, 1 1
Poao(x) = E(GX —6x+1)1nx—Z(3x—2)x+§x1n(27t)+1nA
> B
7B g
o 2(x+1)

Limit and series representations when v > 1. The Eulerian and Weierstrassian

forms of 1\ reduce to
Py(x) = =) gylx+k) = (1) VIL(v+1,%)
k=0

and this series converges uniformly on R, .

Limit and series representations when v < —1. The analogue of Gauss’ limit is
Py(x) = Py (1) + lim f VIgy](x)
n—oo

and both sides can be integrated on any bounded subset of [0, 00) (the limit and the
integral commute). They can also be differentiated infinitely many times (the limit
and the derivative operator commute).

For instance, when v = —2 we obtain

n—1 n—1
P_s(x) = lim ( kgl klnk — Z(x +k)In(x+ k) +x <nlnn + ;ln(27t)>

n—o0
k=0

" @ ((n-l-l)ln (1+T1L) +1nn—1>>.

Comparing this formula with that of (10.2), we see that the latter is less complicated,
since it was produced from less terms in its polynomial part. Now, differentiating the
formula above, we obtain a limit representation for In I'(x), but the Gauss limit is less
complicated. In this context, finding the simplest limit representations seems to be
an interesting problem.

The Eulerian and Weistrassian representations of 1), take the following forms

—v

by(x) =y (1) = —gv(x)+ Z (?)Aj_lgv(l)
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and
-1

D) = a0+ Y (8 e -

j=1

—v—1

+Z —gv(x+k)+ Z ) Agvk) + ()5 |

respectively. These series can be integrated term by term on any bounded subset of
[0, 00). They can also be differentiated term by term infinitely many times.

For instance, when v = —2, both identities above reduce to
(27-[ (3) = (1+2/k (k+2)(3)
b2(x) = In H 1 )Xk k) (k+r1)x(x—2)
bl (14+x/k) (1+1/1)1

and

B (2m)3xe v(E) 2 ex(3) (14 1K) (+0x
P_o(x) = ln< = g L/ F .

Integrating both the Eulerian and Weierstrassian forms of InT(x), we obtain the
following representations (which are simpler than the previous ones since less terms
are involved; see also Examples 8.3 and 8.8)

e* = eX(1+ 1/k)¥°/2
—ox) = In| — _
b-2(x) . (x" 1!:[1 (14 x/k)x+k
and
ex o0 eX+X2/(2k)
ox) = Im|e 2 ] —n |-
Yo%) n(e ol g(1+x/k)x+k
Here again, finding the simplest Eulerian and Weierstrassian forms remains an inter-
esting problem.

Integral representation. For any v € Z, we have

Bulx) = wmf Brsa (D) dt

If v > 1, then 1 is not integrable at x = 0 (since g is not). If v < —1, then 1, is
integrable at 0 by definition and we have

B X B X (X—t)fv 1
Pyo1(x) = L Py (t)dt = L = InT(t) dt.

Gregory’s formula-based series representation. Proposition 8.11 gives the fol-
lowing series representation: for any x > 0 we have

gv—1(x) — Z Gny1A™gy(x)

= gv-1l Z |Gyl Z Hgv(x+k).

Py (x)



173

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series. For
instance, taking v = 1, we derive the identity (see, e.g., Merlini et al. [72, p. 1920])

o0 H 2

Y 1Gal -2 = Y1
n 6

n=1

Taking v = 2, we obtain
m+1)—H 2
E |Gn|—) so= 1208y

Analogue of Gauss’ multiplication formula. Assume first that v > 1. Differ-
entiating repeatedly both sides of the multiplication formula (10.5) for the digamma
function {, we obtain the following formula. For any m € N* and any x > 0, we have

m—1

Zq)v (X+J> = mv+11bv(x)~

j=

Moreover, Corollary 8.33 provides the following limit

lim mYyy(mx) = gv_1(x), x > 0.

m—o0

Assume now that v < —1. Applying Theorem 8.27 to the function g, we obtain that
for any m € N* and any x > 0

m—1

X+ X
Zwv( )> Zm( )+¢V(J+zxgv(m).
j=
Let us expand this formula in the special case when v = —2. First, we have
X 1 Inm m-1
9-2(2) = —ga() T + T, (1)
m m m

and hence

1 _
rig-2 (%) = %lb—z(x) — (;) %m + (mm L X — 1) P2(1).

Using Proposition 8.28, after some algebra we also obtain

m—1 .
S s (]11) - (1—nll>1 A—Eﬂ+( — 1) In((21)%A).
j=1

Now, collecting terms, we finally get the following multiplication formula for {_»

et X + 1 1
Voo ] — S a(x)— —— (6x —6x+1)Inm
= m 12m

+ (m—1)1n(27) (2’;1 n i) + (m— ;) InA.
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Setting m = 2 in the formula above, we obtain the following analogue of Legendre’s
duplication formula

Vs (g) T, (X;Fl) = %lp,z(x) —i (6x* —6x +1)In2
+ iln(27{) (x+1)+ glnA.

Taking x = 0 in this latter identity, we obtain

1 5 3 1
—2lz) = =lh2+ -1 —Inm.
11)2(2) og 2 +2nA+4n7t

Moreover, Corollary 8.33 provides the following limit

. 1 2 1 3
nllgnoo (nﬂwz(mx)—zlnm> = Exglnx—1x2, x > 0.

Analogue of Wallis’s product formula. If v > 1, then the analogue of Wallis’s
formula is simply

(1" gy(k) = (-1)Y(1-27")vIE(v+ 1),
k=1
or equivalently,
D (1% gy(k) = (1) VIn(v+1),
k=1
where 1 is Dirichlet’s eta function. In the case when v = —2, after a bit of calculus

we obtain the following analogue of Wallis’s formula

2n
lim (h(n)+Z(—1)k_1gz(k)> = %1112—3111/\.

n—oo
k=1

where

h(n) = (n—i— i) Inn—n(l1—1n2).

Project 10.2. Find the analogue of Wallis’s formula for the function g(x) = {_z(x).
After some algebra, we obtain

2n
. _ 1
nlgrgo (h(n) + kEZl(—l)k 11b2(k)> = InA— D In2,

where

3 1 1
= n?ln(2n) —=n?+ -n In(2n) — — lnn.
h(n) n®In(2n) 2n +2n n(27r) B nn
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This formula is a little harder to obtain than the former one; it requires the compu-
tation of both functions Z1{_5(x) and 2 Z,p_5(2x) using the elevator method (Corol-
lary 7.20) with r = 2. That is,

Pp_o(x) = —% x(x—1)(2x —1) + %x(x + 1) In(27)
+2xInA+ (x — 1) P_z(x) —2¢P_3(x) (10.7)
and
25 P_5(2x) = —é x(2x —1)(4x—1)+ (4x+3)InA
+ 1—12 (—24x% +48x +5)In2 —41_5(x)
+2xP_2(2x) — 2P _» (x + ;) — 21 _3(2x).
These formulas can also be verified using the difference operator. O

Restriction to the natural integers when v > 1. For any n € N*, we have

n—1 n—1
Puln) = y(1) = Y gk = (WY
k=1 k=1

In particular,
Py(l) = — Z gv (k).
k=1

Gregory’s formula states that for any n € N* and any q € N we have

n—1
Y gv(k) = gyo1(n)—gyva(1)
k=1

q
— Y Gj (A tgy(n) —AITtg, (1)) — R,
j=1

with
|R?1| < Gq‘Aqgv(n)_Aqgv(lN-

Generalized Webster’s functional equation. For any m € N*, there is a unique
solution f: R, — R to the equation

m—1 .
f(x+ 1;) ~ gv(x)
j=0

that lies in KX(~Y)+, namely
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Analogue of Euler’s series representation of y. Assume first that v > 1. In
this case, for any k € N we have

V(1) = Pyir(l) = (1)U v+ RV R+ 1)

Thus, the Taylor series expansion of v (x + 1) about x =0 is

[o¢]

Py(x+1) = Z(—I)VH“lw (v +k+1)xk, Ix| < 1.
k=0 )

Integrating both sides of this equation on (0, 1), we obtain the identity

o]

gy (1) = 3 (-t

CE {v+k+1).

O

k=
We proceed similarly when v < —1. To keep the computations simple, let us assume
that v = —2. We then have

bool) = S, W) = ba1) = 0, V(1) = vol(1) = v,
and for any integer k > 3,
PY(1) = Pea(l) = (D k—2)g(k—1).
Thus, the Taylor series expansion of {p_5(x + 1) about x =0 is

P_o(x+1) = fln 27) y—+Z 1)k IC )ixk, x| < 1.

Integrating both sides of this equation on (0, 1), we obtain

g CK) _ 131
kZZQ(*l) m = EY*ZJrEln(ZTc)JrlnA.

Analogue of the reflection formula. Assume first that v > 1. Differentiating
the reflection formula for 1 repeatedly, we obtain the following formula. For any
x € R\ Z, we have

Py (x) = (=1)"Py(1—x) = —7mDY cot(mx).
When v < —1, a reflection formula on (0, 1) can be obtained by integrating both sides
of the identity
InT(x) +InT(1 —x) = lnm— Insin(mx).

For example, for any x € (0,1) we have

P o(x) =P 3(l—x%x) = xIlnmw— %1n(27t) — JX Insin(7tt) dt.
0

As a byproduct, we obtain

1
B 1
,[2 Insin(rtt) dt = — =In2.
O 2
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10.4 The g-gamma function

For any 0 < q < 1, the q-gamma function I';: R, — R, is defined by the equation
(see, e.g., [93, p. 490])

I —x (g;9)
T (x) = (1—q)*™ -1 = (1—q)lr -t for x > 0. (10.8
a(x) = (1-q) gl—w L s (10.8)

Here we use the standard notation
(a;q)0 = H (1— aqk) .
k=0

Note that these functions should not to be confused with the multiple gamma func-
tions discussed in Section 5.2 (although the same symbols are used).

The function fq(x) = InT4(x) is a convex solution satisfying fq(1) = 0 to the
equation Afq = g4 on R, where g4: R, — Ris the function defined by the equation

1—qg*
1—q

gq(x) = In for x > 0.

Since gq lies in D' N X! (and deg gq = 0), by the uniqueness theorem we must have
InT4(x) = Zgqlx), x > 0. (10.9)

Askey [13] proved an analogue of the Bohr-Mollerup theorem for I';. However, as
Webster [98, p. 615] already observed, this is actually an immediate consequence of
the uniqueness Theorem 3.1 in the special case when p = 1.

Let us now investigate this function in the light of our results.

Remark 10.3. When q > 1, the g-gamma function I';: R, — R, is also defined by
Eq. (10.9). In this case, using L'Hospital’s rule we can readily see that Agq(x) — Inq
as x — oo, and hence deg g4 = 1. An analogue of the Bohr-Mollerup characterization
for I'y was established by Moak [74]. We can see now that this characterization is a
trivial consequence of our uniqueness Theorem 3.1 in the special case when p = 2.
The complete analysis of 'y through our results is similar to the case when 0 < q < 1
and is left to the reader. O

ID card. As discussed above, the function I'; is a I'-type function and we immediately
derive the following basic information.

gq(x) Membership | deggq | Zgq(x)
Ini=4 | e*NDNK®| 0 |InTq(x)

Analogue of Bohr-Mollerup’s theorem. The g-gamma function can be charac-
terized as follows.
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All eventually convezx or concave solutions fq: R, — R to the equation

nl_qX
1—q

falx+1) —fq(x) = 1

are of the form fq(x) = cq +1InTq(x), where cq € R.

Using Proposition 3.9, we can also derive the following alternative characterization of
the q-gamma function.

All solutions fq: R, — R to the equation

1—qg*
1—q

fq(x +1) —fq(x) = In
that satisfy the asymptotic condition that, for each x > 0,

1—qg™
fq(x+7) = fg(n) —xIn — q

— 0 as n —y 00

are of the form fq(x) = cq +1InTq(x), where cq € R.

Extended ID card. Interestingly, El Bachraoui [35] recently established the follow-
ing analogue of Raabe’s formula

x+1 1 1 .
= —_ — — _—— x N >
L InTg(t) dt <2 x) In(1—q) Ing Lis (™) + In(q; q) o, x>0,

where
: X zk
Lis(z) = )
k=1

is the polylogarithm function. This formula provides immediately the following values

1 2

olgql = 2ln(lq)fl(lq)Jrln(q;q)(X,, (10.10)
1 1

olgq] = —gln(l—q)—me(q)+1n(q;q)oo, (10.11)

and the integral

L gq(t)dt = (1—x)ln(l—q)— ﬁ (Lis(q") — Lis(q)).

We then have the following values

olgq] olgq] Ylgq]
Eq. (10.10) | Eq. (10.11) | y[gq] = olgq]
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o Alternative representations of olgql = v[gql

1
olggl = Jlnrq(tJrl)dt,
0

o = toglg | (L—) —9 at
olgql = quL (2 >1—qt )

B 00 (1_thj)1/2(1_th+1J)1/2

olggl = Jl In —qt dt,
_1¢ oKy aktlyy Lo

olgql = 2kZlen((l 91 —q"") — 7 Lis(a).

o Generalized Binet’s function

Plnofg(x) = lnFq(X)—|—(X—l)ln(l—q)—i—ﬁLig(qX)—i—%ln(l—qx)

—1In(q;q)eo -

o Alternative characterization. The function fq(x) = InTy(x) is the unique
solution lying in C° N X! to the equation

x+1 1 1 . N
J fq(t)dt (2—x> ln(l—q)—lez(q ) +1n(q; q) o, x > 0.

Inequalities. The following inequalities hold for any x > 0 and any a > 0.

e Symmetrized generalized Wendel’s inequality (equality if a € {0, 1})

InTq(x+a) —InTy(x) —agq(x)] < la—1]lgq(x+a)—gq(x)l
< [alla—1/|Agq(x)],

_ x+a\ —la—1] _x+a) la—1]
(11 q > < Fq(x+a) < <11 q > '
—qgx 1—qgx — ax
q Iq(x) (%ﬂ ) q

o Symmetrized Stirling’s formula-based tnequality

Plnold(l < 5 (galx+ 1)~ gq(x)),
(1qx+1>—§< rq(X)(l—q)xfl(l—qx)% _ <1qx+1)é.
1—q~ (65 @)oo exp (— 25 Lia(q)) 1—q~

e Burnside’s formula-based tnequality

InT, (x+ ;) + (x— ;) In(1— q) + — Liz(q") —ln(q;q)oo’

Inq

< PP laolg)(x)l.



180

o Generalized Gautschi’s inequality

a—la]
e
Fq(x + [a]) 1—q
where g 0(x) = DInTg(x).
Generalized Stirling’s and related formulas. For any a > 0, we have the fol-

lowing limits and asymptotic equivalences as x — oo,

InTq(x+a)—Inly(x) - —aln(l—q),

~ (1—-q)9, InTy(x+a) ~ —xIn(l—q),

InTq(x) +(x—1)In(1—q) —In(q;q)s — O,

Fq(x) ~ (4;9)e0 (1 —q)
The generalized Stirling formula simply shows that In 'y (x) has the oblique asymptote

1—x

y = (1=x)In(1—q)+In(q; q)-
Burnside-like approzimation (better than Stirling-like approximation)

1 . 1
Falx) ~ (650) (1= @) exp (— o Linla* )
Further results (obtained by differentiation). For any 0 < q < 1 and any v € N,
let the function 14 : Ry — R denote the g-polygamma function defined by the
equation
Pq,v(x) = DY InTy(x) for x > 0.

We then have the following limits and asymptotic equivalences as x — oo,

Vgolx+a)—bgolx) = 0,  Wgolx) - —In(l—q),

Vgolx+a) ~ —In(1—q), Waul) = 0,  veEN
Project 10.4. Find the generalized Stirling formula when q > 1. In the case when
q > 1, we have deg g4 = 1 and hence the generalized Stirling formula is

x+1

1 1
lnrq(x)—J InTy(t) dt+§gq(x)—Equ(x) — 0 as x — 00,

X

where Agq(x) — Inq as x — oo. However, here the integral takes the following more
complicated form (see El Bachraoui [35] and the references therein)

Jmmr (dt = ImCq— (279 (2Liy(q™) + (ln(1 — q*))?)
M T T g g \1-qx P )

B 1_qX 1_q'X. B —xy X 1_q'X. 2
21_qixln1_q1n(1 qg*)—q <1n >>
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where N
Cq = q =(q—1)F T (749 Y.
This is the analogue of Raabe’s formula for InT(x) when q > 1. O

Asymptotic expansions. For any m,r € N* we have the following expansion as

m—1 .
1 iy (1 PR T .
— Zlnrq (x+m> = (2 x) In(1—q) 1nquz(q ) +1n(q; q)oo

Setting m = 1 in this formula, we obtain the expansion of the log-q-gamma function

InTy(x) = (; —x) In(1— q) — ﬁ Liz(q%) +In(q; 4)eo

+Zk'gq (x)+0 (g00).
Generalized Liu’s formula. For any x > 0, we have

g = (5 %) 01— q) ~ o= Liala) +In(ai )

_iploat RN
21n17q (lnq)J ({t} ) 7qx+tdt

Limit and series representations. It is not difficult to see that both the Eule-
rian form of Zgq(x) and the analogue of Gauss’s limit reduce to the definition of
the g-gamma function given in Eq. (10.8). Let us now examine the other series
representations.

e Wezierstrassian form. For any x > 0, we have

Inl,(x) = —1 _q+¢() ilﬂ_,_(l )qik
nly(x) = 0= q q0(1 2 nl—qk nq 1_qu.

Differentiating this series term by term, we obtain

x o 1 1
ll)q’o(X) = (].Ilq) 1ﬂqx +1bq,0(1) + (]-nq)Z (1qx+k - 1qk> .
k=1

o Gregory’s formula-based series representation. For any x > 0 we have the
series representation

Inly(x) — (; —x) In(1—q)— ﬁ Lin(q¥) + In(q; )

—Z Gl Z ©)galx+K).
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Setting x = 1 in this identity yields the following analogue of Fontana-Mascheroni
series

1 1 .
Z|Gn+1| Z Haqk+1) = _Eln(l_q)_me(q)‘Fln(q;q)oo

Analogue of Gauss’ multiplication formula. After first noting that

X 1
gq (H) = gq%(x) + gq <m> ) X > Oa

we immediately obtain the following identity

m—1
ZlnF <x+ > Zlnl’ < )+1nl’ 1 (mx) + (mx —1) gq <1111>

j=

Now, using Proposition 8.28, we also obtain

m

. iy _ m-1_ . o i1
j;lnrq <m> = —5—In(1-q)+mln(g;q)s 1n(q .q )m.

Thus, we get the following multiplication formula
m—1 . m 1\ mx—1
m— ) 1 - m
ITr <x+)> = (1—q) 21% rq%m(mx)<1q> ,
=0 m (a75aw) N —4
or equivalently, replacing q with q™

=, j (@™ q™)™ 1—q \™*
P (xt ) = 1 qm=* 959 ) - .
[T (v 5;) = e MEEEE rawn (1)

(See also, e.g., Srivastava and Choi [93, p. 494] and Webster [98, p. 617].) For instance,
when m = 2, we obtain the following analogue of Legendre’s duplication formula

(q q) rq(zx)
(4 Qoo (T4 q)217

(S

T2 (%) Ty <x+;> = (1-¢?%)

Analogue of Wallis’s product formula. Using Proposition 8.49 with
dq(x) = 2g9q(2x) = 2(gq2(x) +94(2)),
we obtain

h(n) = Xgqn+1)—Zgq(2n+1)
2InTg2(n+1) +2g2(2)n —InTq(2n + 1).
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Using the generalized Stirling formula, we then have

lim h(n) = 2In(q% q%)s — In(q; q)so-

n—oo
Finally, we obtain the following analogue of Wallis’s formula

2n

: 1, 1—¢* (95 @)oo
lim ¥ (1) !'lh—" = In—2to
Mook;( ) 1—q (9% a*)%

Generalized Webster’s functional equation. For any m € N* and any a > 0,
there is a unique solution f: R, — R, to the equation
m—1
filx+qj) =
j=0

1—qg*
1—q

such that In f lies in X° (or in K'), namely

10.5 The Barnes G-function

The Barnes function G: Ry — R, is the function G = 1/ as defined in Section 5.2.
Hence, it can be defined by the equations

InG(x) = ZInT(x) = Z¥_1(x) for x > 0.

ID card. We have the following basic information about the Barnes G-function:

g(x) Membership | degg | Xg(x)
InT(x) | C* ND2NK® 1 In G(x)

Analogue of Bohr-Mollerup’s theorem. The function G can be characterized in
the multiplicative notation as follows.

All solutions f: Ry — R to the equation f(x+1) = I'(x)f(x) for which
Inf lies in K? are of the form f(x) = ¢ G(x), where c > 0.

Interestingly, this characterization enables one to establish the following identity
InG(x) = — (’2‘) +(x—1)InT(x) + %1n(27‘[) x —P_a(x). (10.12)

Indeed, both sides vanish at x = 1 and are eventually 2-convex solutions to the
equation
f(x+1)—f(x) = InT(x).
Hence, they must coincide on R .
Using Proposition 3.9, we can also derive the following alternative characterization
of the Barnes G-function.
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All solutions f: R, — R, to the equation f(x + 1) = T'(x)f(x) that
satisfy the asymptotic condition that, for each x > 0,

fx+n) ~ T)*nBfm)  asn -y oo

are of the form f(x) = ¢ G(x), where ¢ > 0.

Extended ID card. The value of the asymptotic constant o[g] can be derived for
instance from identity (10.12). One can show that (see, e.g., [93, p. 53])

! 11
olg] = J InG(t+1)dt = E+Zln(2n)—2lnA ~ 0.045.
0

We then have the following values:

olg] olg] vlg]
In(

L 2n) —2InA | & + +In(2m) —2In A | ylg] = olg]

1
12 14

e Inequality

e Alternative representations of olgl = ylg]

olg] = 1n(27‘c) + nll_lil)o <Z InT(k) —P_5(n) — %In M'n)— 1—12 In n)

1 1 1
olg] = 51 n(27m) + nlgIéo (Z InT(k) —Pp_2(n) — 5 InT'(n) — 121|)(n)> )
olgl = L <1n ril +{t}1 [t] + <{2}> In (1 + &J)) dt,

00 r LtJ7/12
olg = L <1n t e 1J1/12> dt,
ol = v—3 |, Ballwaar

1
- e VR
g = .

olg (H 12 K \ﬁ)

o Generalized Binet’s function. For any q € N and any x > 0

q
J9 1 InoG](x) = InG(x) —P_»(x) —5lgl + Z G; A ' InT(x).

j=1
For instance,

IPlnoGl(x) = InG(x) —P_z(x) —Glgl + %ln I'x)— % Inx.
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o Analogue of Raabe’s formula

x+1
J ' InG(t)dt = Glgl +¥_a(x), x > 0. (10.13)

x

e Alternative characterization. The function f(x) = In G(x) is the unique solu-
tion lying in €° N X2 to the equation

x+1
J f(t)dt = Glgl +¥_a(x), x > 0.

X

Project 10.5. Find a closed-form expression for the integral

r In G(t) dt.
1

We apply Proposition 8.20. Using (10.13) and then (10.7) we obtain

X x+1
J InG(t)dt = ZXJ " InG(t)dt = Glgl (x —1) + Zp_2o(x)

1 x

2lnA + i (x% + 1) In(2m) — % (2x 4+ 1)(x —1)2
+(x—1)Pz(x) —2_3(x).

This expression could have been obtained also by integrating both sides of (10.12). ¢

Inequalities. The following inequalities hold for any x > 0, any a > 0, and any
n e N*.

o Symmetrized generalized Wendel’s inequality (equality if a € {0, 1, 2})
|1nG(x+a)—lnG(x)—alnF(x)—(g)lnx| < |(“;1)’ In (l—i—%),
_|fa—1 a—1
(1+g) [(5)] < G(x—i—a)ﬂ < (1+g>|(2)|'
X G(x) P(x)ax(3) X
o Symmetrized generalized Wendel’s inequality (discrete version)

n—1

n—1
InG(x)— Y InT(k)+ ) InT(x+k)—xInT(n)—(5)Inn
k=1

k=0
< |0 m(1+2),

<1+E>7|(X;1)| < G(x) r(x)r(x—|—1)...r(x+n_11 _ (1+E)|(x;1)|
MN2) - Tn—1rn)nb) n
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o Symmetrized Stirling’s formula-based inequality

[IPlnoGl(x)| < 112(x+1)2(2x—|—5)1n<1—|—i)—712(12x2+48x+49)

5 1
< = fl
< 121n(1—|—x),

—5/12 1/2 5/12
e

x1/12 b _2(x)+Tlg]

o Generalized Gautscht’s tnequality

G(x+a)

T'(x + a—[a] < e[affa'l)DlnG(er]'a]) <

< T(x+ [a])e L,
(These inequalities are valid only if x + [a] > xp, where xg = 1.92... is the
unique positive zero of the function D?In G(x).)

Remark 10.6. It is not difficult to see that the first inequality in Proposition 6.19
does not hold for large values of x when g(x) = InT'(x). This shows that the analogue
of Burnside’s formula does not hold in general when degg > 1. O

Generalized Stirling’s and related formulas. For any a > 0, we have the fol-
lowing limits and asymptotic equivalences as x — oo,

InG(x+a)—InG(x) —alnl(x) — (§)Inx — 0,

InG(x) —P_s(x) + 1ln I'(x) — 1 Inx — Tlg],

2 12
I G(x) () + 5 InT(x) — 72 (x) - olg),

Gix+a) ~ GT*xE),  mGx+a) ~ v ax),

G(x) ~ exp(p_a(x) +3lgl) N(x) "2 x3=.
Further results (obtained by differentiation)

xPpx+a)—xP(x) — a, xPi(x) — 1, xP(x+a) ~ InT(x),
InT(x) — <x—;) Px)+x — %(1+1n(27t)).

Remark 10.7. Using one of the asymptotic equivalences above, we get

1
x12

[SIC

G(x+1) ~ exp(b_a(x)+70lgl)T'(x) as X — 00.

Combining this latter equivalence with identity (10.12) and the Stirling formula for
the gamma function, we also obtain the following simpler form

m""
<

Gx+1) ~ A 1x2¥ " 12(2m)3 e 3% 1 as x — oo.
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Asymptotic expansions. For any m,q € N* we have the following expansion as
X — 00

m—1 . q
L > ne (x ; ;1) =T+ Y Dk b sl + O 1)) (10.14)
Setting m =1 in this formula, we obtain
_ 1 By
InG(x) = olgl+ ) <720 +0(bg-1(x),

or equivalently, if q > 2,
. 1 1 By
PlnoGl(x) = - ((x) —lnx) + ) bie2(x) + O(hq-1(x)).
k=3
Setting q = 4 for instance, we obtain the following expansion
1

I G(x) = lgl + ¥ 5(0) — 5% 1(0) + 15 b(x) — s a(x) 40 (x).

Generalized Liu’s formula. For any x > 0 we have
1 1 1 [
InG(x) = lg)+¥-a(x) — 3 ¥-a(0) + ;90 + 3 | Ballth a0 &t
0

or equivalently,

[o¢]

JlnoGl(x) — le(w(x)—lnxwéj Bo([t)) i (x + 1) dt.

0

Limit, series, and integral representations. Let us now determine the main
representations of the function ln G(x).

e Eulerian form and related tdentities. We have

InG(x) = —lnr(x)—Z(lnr(x+k)—1nr(k)—x1nk—(’z‘)ln (1+]1<>),
k=1

ol o T, x
G(x) = - Er(x+k)k (1+1/x)3),

=~

Upon differentiation, we obtain

xP(x) = X—%(1+ln(2n))—i <1J,)(x+k)1nk (x;) In <1+]1<>>,

k=1

B +xbil) = 1- Y (d)l(x—i-k) “In <1+ i)) ,

k=1

(D Pe() +xPria() = =3 bralx+k),  TeEN
k=1
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o Weierstrassian form and related identities. We have
InG(x) = (—1—v)(3) —InT(x)

— i (ln MNx+%k)—1InT(k) —xIlnk — (’2‘) lbl(k)) ,
k=1
e[f‘yfl](;) © r( )

_ K xeti (9 (3)
= Llrag e ’

=

Upon differentiation, we obtain

x1|)(x)+<x—;)y+ln27t = i( (x+k)— <X—>1b1(k)—1nk),

[ee}

V) +xP1(x)+y = =D (Wilx+k) —i(k).
k=1
o Analogue of Gauss’ limit and related identities. The analogue of Gauss’ limit
is

n—oo

n—1
InG(x) = lim (Zlnr —Zlnr(x+k)+x1nr(n)+(2;)1nn>,

B FF2) --- T(n)
G = I e D T ™

Upon differentiation, we obtain

(x —DP(x) —x+ 1(1+1n(27[))

n—1
= lim <—1§)¢(x+k) +InT(n) + (x— ;) 1nn> ,

n—oo

(x—1DP1(x) +P(x)—1 = lim <1nn le)l x+t>

e [ntegral representations. Using the elevator method on one and two levels, we
obtain the following representations

InG(x) = —1(x—1)(x—1n(27'[))—|—Jx(t—1)1j)(t)dt
2 1
and
InG(x) = —;(X—l)(x—ln(Zﬂ))+J:(X—t)(¢(t)+(t—1)1b1(t))dt

Each of these representations actually leads to identity (10.12).
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o Gregory’s formula-based series representation. For any x > 0 we have the
series representation

In G(x)

WP_o(x) +olgl — flnl" Z Gni2A™1g(x)

= ¢_2(X)+E[9]—*1nr Z|Gn+2| Z 1) In(x + k).

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series
Glgl = —fln 2m) +Z|Gn+2|z ) In(k + 1).

Note that the Eulerian and Weierstrassian forms above can also be integrated
term by term on any bounded interval of [0,00). For instance, integrating on (1, x)
provides series representations for the integral of In G(x) as defined in Project 10.5.

Analogue of Gauss’ multiplication formula. For any m € N* and any x > 0, we

m—1 X+ m . X
Y G <J> - Y G (’) +5mr ().
, m , m m
j=0 j=1

For instance, setting m = 2 in this identity, we obtain

1nG(X;1>+1nG(’2‘) - lnG( )+z 1nr( ).

However, to make this multiplication formula interesting and usable, we need to find
a simple expression for its right side. In particular, we need a closed-form expression
for the function L, InT(;;). Such a result would be most welcome.

We can nevertheless investigate the asymptotic behavior of the function

m—1 .
X ZlnG <Xm+1)

j=0

have

In addition to the asymptotic expansion given in (10.14), Proposition 8.30 yields the
following convergence result. We have

m—1

Y 6 (M) i (1) 43 ar ()
j=
_112(1nr<x:11>_1nr(;)) — m0olg] as x — oo.

Analogue of Wallis’s product formula. Using Legendre’s duplication formula for
the gamma function, we obtain

ZxInT(2x) = InG(x)+InG(x+31)—InG(3)
+ (x*4+1)In2 — ¥ In(167).
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Using this identity with Proposition 8.49, we can derive the surprising analogue of
Wallis’s formula

Am, r(2)r(4) --- T(2n)

r(1re3) ---r@2en—-1) <2n>” 1
e V2

Note that a shorter proof of this formula can be obtained using the second sequence

described in Remark 8.53.

Project 10.8. Find the analogue of Wallis’s formula for the function g(x) = ln G(x).
After some algebra, we obtain

i GWG() - Gl2n— 1) nVoanTag oV g e Al
n—oo  G(2)G(4) -+ G(2n) esn’—3n—3 B

This latter formula is a little harder to obtain than the former one. Using Proposi-
tion 8.49 requires the computation of both functions X 1n G(x) and 2 X, In G(2x) using
the elevator method (Corollary 7.20) with r = 1. That is,

IInG(x) = —éx(x—l)(2x—5)+ix(x—3)ln(2ﬂ)—xlnA
+%(x—1)(x—2)1nr(x)—%(2x—3)¢,2(x)+xp,3(x)
and
2%, InG(2x) = —ix(2x—1)(4x—7)—2xlnA
—|—%(2x2—3x—1)1n2+x(x—2)1n7'c
+ %m M(x) + %(27( —1)(2x —3)InT(2x)

—2(x — 1) h2(2x) +p_5(2x).

Here again, a shorter proof of the limit above can be obtained using the second
sequence described in Remark 8.53. O

Restriction to the natural integers. For any n € N* we have
n—2
Gn) = J]x.
k=0

Generalized Webster’s functional equation. For any m € N*, there is a unique
solution f: R, — R, to the equation

m—1 .
Hf<x+ 111) — T(x)
j=0

such that In f lies in K*, namely

G 1
) = St
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Analogue of Euler’s series representation of y. The Taylor series expansion of
In G(x + 1) about x = 0 is (see, e.g., [93, p. 311])

oo

(In(2m) — 1) x — L“ Z ) x| < 1.

N =

InG(x+1) =

Integrating both sides of this equation on (0, 1), we obtain the identity

> (k) 11
g k+1(k+2) = 5Ty A

Also, the exponential generating function for the sequence n — o[g(™] is

egfolgl(x) = InG(x+1)—P_a(x+1)+ fln(2n)—%+21nA

Integrating both sides of this equation on (0, 1) (i.e., we use (7.5)), after some algebra
we obtain

= K k—1 5 1
k;(—1) i DTy (K = g —3mA— g n(2m).

Analogue of the reflection formula. A reflection formula for the Barnes G-
function is given in (8.27); see, e.g., [93, p. 45].

10.6 The Hurwitz zeta function

For any x > 0, the Hurwitz zeta function s +— ((s,x) is defined as an analytic
continuation to C \ {1} of the series (see, e.g., [93, p. 155])

® 1 00 s—1o—xt
D x+K)"C = — J ———dt,  %R(s)>1.
r(s) 0 l1—e t
k=0
It is known (see, e.g., [93, p. 159-160]) that this function satisfies the identity
D];C(va) = (_S)LC(S + k,X) ) k € Nv
and the difference equation

Us,x+1)—((s,x) = —x"°%. (10.15)

For any fixed s € R \ {1}, define the function gs: R, — R by the equation

S

gs(x) = —x— for x > 0.

We then have g € €*NXK>®. If s >0 and s # 1, then g5 € DY. If s > 1, then
gs € Dgl. If —p < s < 1 for some p € N, then g5 € D, and hence we can consider

p = l4deggs = [1—5s].
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In all cases, we have
Igs(x) = (s, x) —((s),
where s — ((s) = ((s,1) is the Riemann zeta function.

ID card. The basic information about the Hurwitz zeta function is summarized in
the following table.

gs(x) Membership deg g 2gs(x)
C*NDINK®, ifs>1,
e NDU=sl x> ifs< 1.

—1+[1—s]y | Cs,x) —(s)

Project 10.9. Find a closed-form expression for Lg, where

Expanding x? = (x + 1 — 1)?, we obtain

g(x) = (x+1)F —2(x+1)3 + (x+1) 2
and hence
Zg(x) = e —{(=Fx+ 1) + 205 x + 1) = L5 x +1)
for some ¢ € R. .

Analogue of Bohr-Mollerup’s theorem. The function ((s, x) can be characterized
as follows.

All solutions fs: Ry — R to the equation
fs(x+1) —fs(x) = —x°

that lie in K1=5)+ are of the form f(x) = cs + ((s,x), where cs € R.

Extended ID card. The asymptotic constant o[g;] satisfies the following identity

1 1
olgs] = J Us,t+1) dt— o(s) = —s).

0 s—1

Hence we have the following values

6[95] G[gs] Y[gs]

00, if s > 1, s, -
—{(s), ifs<1. w1~ Cls) | olgs] - thil : Gj A 1gs(1)

We also have the following identities.
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o Alternative representations of olgsl

n—1 [1—s]4
_ ; _ j— 1
olgs] = nlgr;o ) Zk + Z G;A (m) ],
[1—s]4
1 B;
. —s 1—s )
0'[95] = nlgrgo s—1 1—s ZO (j)nsﬂ—l )
k=1 j=
[1—s]
olgs] = Z Gy At g, (1)
o Ki—s 1—s [1—s]+
—(k+1 :
Z S(_l L > GjAig(k) | .
k=1 j=0
If s > —1, then
1 *{t)— 3
G[gs] = —§+SJ P} dt.
If s < —1, then for any integer q > [(1 —s)/2],
7} Boi  \2k—1 (*S)Q*q Joo ng({t})
olgs] = 2+1§1(2k)!( )2kl g Bl )y e dt.

e Representations of y[gs]

[1—s]+
vlgs] = o

- ) GATg(1),
j=1

0o g Ll=s]t

vied = [T (X 6aalit-am)a,
1 i—o
oo s Ll1—s]+

vlgsl = L ( >

<{t}> Ngs([t]) — gs(t)) dt.
=0 )

o Generalized Binet’s function. For any q € N and any x > 0

JIHZg(x) = ¢[s,x)

e Analogue of Raabe’s formula

x+1 1—s
J ((s,t)dt = X

X
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e Alternative characterization. The function fg(x) = ((s,x) is the unique solu-

tion lying in €% N K 1—s)+ to the equation

Inequalities. The following inequalities hold for any x > 0, any a > 0, and any

n € N*.

o Symmetrized generalized Wendel’s inequality (equality if a € {0,1,...

s]+})

[1—s]+

1=

Usx+a)=s,0— Y (A ex)| < Tal|(,50)][al g,

j=1
If s <0, then
[1—s]

Usix+a) = Ls)— Y (9 gs(x)

j=1

< | [ague+ a) - allga)

e Symmetrized generalized Wendel’s inequality (discrete version)

a5, = ¢l =t lg )| < P |(05)|[aR e g )

If s <0, then

(s, x) = 2ls) = 1l lgd0o| < [(37)][Algste+m) — ALdgo ).

Here

n—1
FRs gl () = D (x+%k)" Zk_
k=0

o Symmetrized Stirling’s formula-based tnequality

[1—s]+

Z () ayns.

j=1

’]Ll*sJJﬁLl[ng](X)‘ < CL1—5J+ ‘AL1*5J+95(X)’.

If s <0, then

pe-sizaat] < [/ fa e - ot St

e Burnside’s formula-based inequality if s > —1

1 les
()35

gl o).
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e Additional inequality if s > 1.
0 < &s,x+n) = Y (x+Kk)7° < s,m).

o Generalized Gautschi’s inequality

Ifs>0,s#1,

(a] —a)(x+[a])* < s([a] —a)&ls+1,x+ [a])

<
< s, x+a)—C(s,x+[a]) < (Ja]—a)(x+ [a])"®.

If s <0, then these inequalities must be reversed and they are valid only if the
Hurwitz zeta function is concave on [x + |[a], c0).

Generalized Stirling’s and related formulas. For any a > 0, we have the fol-
lowing limits and asymptotic equivalences as x — oo,

[1—-s]+
s, x+a)=Cls,x)— D (§) A Tgslx) — 0,

j=1

1—s [1—s]+

X .
Usx) = + > G AT = o,
j=1
[1—s]+
1 L« B
C(S’X)+1—s Z (].5) Xs+j]—1 — 0,
j=0
1—s
((s,x+a) ~ X .
s—1

In particular, if s > 1, then ((s,x) — 0 as x — oo.

For instance, setting s = —% in these latter two asymptotic formulas, we obtain

C(=3,x)+2x52 - Lx®2 4+ L (x+1)%2 — o0,
C(=3,%) +2x52 —1x3/2 4 112 5 g,
If s > —1, then we have the analogue of Burnside’s formula

(s, x) — 25 (x— 3 — 0, as X — 00,

which provides a better approximation of (s, x) than the generalized Stirling formula.

Asymptotic expansions. For any m,q € N* we have the following expansion as
X — 00

lmZ_IC sx—i—i - i(lfs)i—&—O(x_q_s)
m T m s—1 kS mke xs k1 '

j=0 k=0
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Setting m = 1 in this formula, we obtain

q

1 .. B o
((s,x) = po— Z(lk )XH;;l—FO(x a-s) .
k=0

In particular, this clearly shows that ((s,x) is a (1 — s)-degree polynomial whenever
1 — s is a positive integer. More precisely, we have

1 n
(1—m,x) = EZ By x" K, n € N*,
k=0
that is,
1
(1—m,x) = _EBn(X)’ n e N*, (10.16)

Generalized Liu’s formula. We have the following formulas for x > 0.

o If s > —1, then

xt7s 1 ° {t}—1
C(S,X) = S—1+§X 7SJ‘0 Wdt
e If s < —1, then for any integer q > [(1 —s)/2],
Xl—s a )2k—1 )24 (® B, ({t
o) = Z P e Balt)
s 2 = )l Jo et u)se

Limit and series representations when s > 1. We simply have

[e¢]

{(s,x) = Z(x +k)®

k=0

and this series converges uniformly on R . In particular, we retrieve the identity

Py(x) = (=1)¥VIVIg(v+1,x%), v € N*,

Limit and series representations when s < 1. We have the following Eulerian
form
[—s]
Us, )= Cs) = —gsl)+ Y (5)ANgs(1)

j=0
[1—s]

+Z —gs(x+k)+ Z YA gs(k) |,

and the Weierstrassian form can be obtained similarly. The associated series converge
uniformly on any bounded subset of [0, c0).



For instance, we have

i
i

The analogue of Gauss’ limit is
C(s,x) = {(s)+ lim le*SJ [gs](x), x > 0.
n—o0

where
n—1 [1—s]

n—1
fslgdx) = ) (x+k)7° Zkf > (A
k=0

j=1

Gregory’s formula-based series representation. For any x > 0 we have

C(s,x)

n+14™gs(x)

n—b—l‘ Z X+k)
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Setting x = 1 in this identity yields a known series expression for ((s) that is the

analogue of Fontana-Mascheroni series

(s) =

n+l| Z k+1)

Analogue of Gauss’ multiplication formula. For any m € N* and any x > 0, we

have
m—1

Z ¢ (S,X;:j> = m®{(s,x).

j=0
Corollary 8.33 provides the following limits for any x > 0

X1—5
lim mS1g(s,mx) = ——, s <1,
m—o0 s—1
x1=s —1
lim m*~}(¢(s,mx) —{(s,m)) = ——, s# 1.
m—o0 s—1

Analogue of Wallis’s product formula. If s > 1, then we have

Z% = (1-2"7%)¢(s) = n(s),

k=1

(10.17)
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where s — 1(s) is Dirichlet’s eta function. When s < 1, the form of the formula
strongly depends upon the value of s. When s = —% for instance, we obtain

2n
lim (h(n)+Z(—1)kk3> = (4v2-1) (=)

n—00
k=1

where h(n) = —8083 /7

Restriction to the natural integers. For any n € N* we have
n—1 00
Us,m)—¢(s) = =) k5 and  ((s,n) = ) k.
k=1 k=n

Gregory’s formula states that for any n € N* and any q € N we have

n—1 1—111_5 q . )
Zk_s =1 +ZG5 (A 1gs(n) — AV 1gg(1)) +R3
k=1 i—1
with
ReLI < GqlA%gs(n) —A9gs(1)].

Many other representations of this sum can be derived from, e.g., the limit and series
representations of the Hurwitz zeta function.

Generalized Webster’s functional equation. For any m € N* and any a > 0,
there is a unique solution fs: Ry — R to the equation

m—1

Z fs(x+aj) = —x°

j=

that lies in Kl~3/+ namely

1 X+ a 1 X
fslx) = (am)s ¢ (S’ am ) ~ (am)s CG’R) '

Analogue of Euler’s series representation of y. We have

(£g9)™(1) = (=s)*¢(s+k), keN"

Thus, the Taylor series expansion of ((s,x 4+ 1) about x =0 is

Us,x+1) = Z (_ks) U(s + k) xk, x| < 1.
k=0
Integrating both sides of this equation on (0, 1), we obtain the identity

[o¢]

() s +k—1) = —1, s<2, s¢7.
k=1



199

(When s > 2, the summand in the series above does not approach zero as k increases.)

Analogue of the reflection formula. A reflection formula can be derived when s
is an integer. Recall that we have the following special values for any n € N*

(1) = (D™ o (x)

and

(1-n%) = = = Balx).

It follows that for any x € R \ Z, we have

(—1)s*

nDs !cot(mx), if s—1 € N*,
Lo + (1) Lfs,1—x) = § G0 ot
0, if —seN.

10.7 The generalized Stieltjes constants

Recall that the generalized Stieltjes constants are the numbers v, (x) that occur in
the Laurent series expansion of the Hurwitz zeta function

s = 2+ Y s (10.18)
n=0

Recall also that the numbers y,, = yn(1), where n € N, are called the Stzeltjes
constants. The Stieltjes constants and generalized Stieltjes constants are known to
satisfy the relations

Yo(x) = —¥(x) and v =¥
as well as the following identities for every q € N

L = (Ink)d (Inn)d+?
Ya J%(Z K qat )

k=1

Yo = Jim

= (In(x+k)9  (In(x+n))9+?
(Z x+k q-+1 )

k=0

For recent background on these constants, see, e.g., Blagouchine [19,20] and Blagou-
chine and Coppo [22] (see also Nan-Yue and Williams [80]).

Here we naturally restrict the values of x to the set R, . Interestingly, the gener-
alized Stieltjes constants also satisfy the difference equation

Vq(X+ 1) _Yq(x) = gq(X):

where gq: Ry — R is the function defined by the equation

1
gqlx) = —;(lnx)q for x > 0.
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Thus, our theory is particularly suitable for the investigation of these constants. For
any ¢ € N, the function g4 lies in €* N DO N K> and is increasing on [e9, c0). By
uniqueness of Xgq, it follows that

Lgq(x) = vq(x) —vq-

ID card. The introduction above enables us to provide the following basic informa-
tion about the generalized Stieltjes constants.

gq(x) Membership | deggq 2gq(x)
—ilnx)9 | e*nNDONK® | —1 |vq(x)—vq

Analogue of Bohr-Mollerup’s theorem. The function vy, can be characterized
as follows.

All eventually monotone solutions fq: R, — R to the equation
1
fqlx+1) —fq(x) = — =(lnx)9
X

are of the form fq(x) = cq +vq(x), where cq € R.

Using Proposition 3.9, we can also derive the following alternative characterization of
the function v.

All solutions fq: R, — R to the equation
1
falx +1) —fq(x) = — ;(lnx)q
that satisfy the asymptotic condition that, for each x > 0,
fgx+n)—fq(n) — 0 as M —y 00
are of the form fq(x) = cq +vq(x), where cq € R.

Extended ID card. Using identity (8.11), we can immediately make the remarkable
observation that the asymptotic constant o[g4] is exactly the opposite of the Stieltjes
constant v4. We then have the following values

olgql | olgql | vlgql
0 —Yq | Yq

o Alternative representations of olgql = v[gql

. fiCqu_Umk+UW“—UMMW“>
Yo = Tk q+1 ’
00 _1
va = [ Harmorig-noa ey

t] t

2
o
l
%

1

owmw amw)ﬁ.
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e Generalized Binet’s function. For any r € N and any x > 0

T

+1
T ygln) = vqbo + 2 3 Ga

o Analogue of Raabe’s formula

yqt)dt = — = x>0 (10.19)

J-x+1 (lnx)q+1
x q+1

o Alternative characterization. The function f(x) = y4(x) is the unique solution
lying in C° N XK° to the equation

fl)dt = ——2—,  x>0.

Jx+1 (lnx)q+1
x q+1

Inequalities. The following inequalities hold for any x > 0, any a > 0, and any
neN.
o Symmetrized generalized Wendel’s inequality (equality if a € {0, 1})
If x > e9, we have

(Inx)4

X

lq(x+a) —vq(x)| < W’

e Symmetrized generalized Wendel’s inequality (discrete version)

If n > e9, we have

x—l—k n

o Symmetrized Stirling’s and Burnside’s formulas-based inequalities

If x > e9, we have

X+ 1 + le)qﬂ
Ya 2 q+1

e Further inequalities. For 0 < x < 1, we use the following approximations (see
Nan-Yue and Williams [80, p. 148])

(Inx)a+?

Yq(x)+ q+1

X

’(Inx)q

YO(X)—% Y
and (Inx) (34 (~1)9)(2q)!
nx + (— q)! "
Yq(x) — . q9+1(2m) , qeN~.
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Generalized Stirling’s and related formulas. For any a > 0, we have the fol-
lowing limits and asymptotic equivalence as x — oo,

Inx)d+!
Valetr @) =vald) > 0, yal+ B oo,

(lnx)a+!
q+1

Burnstide-like approzimation (better than Stirling-like approximation)

1 1\ 9+t
yq(x)+w(ln<x—2>) — 0.

Further results (obtained by differentiation)

Yqlx+a) ~ —

(Inx)9 (Inx)d

X

Yq(x) +

— 0, Yqx+a) ~ —

For any r € N,

(Inx)a+?
q+1 — 0.

. 1 1\ 91
D} (yq(x)+(ﬁ_1<ln(x—2>> )*) 0.

Asymptotic expansions. For any m,r € N* we have the following expansion as
X — 00

m—1 . N
1 i) ottt & By, o
m — Yq <x+m> = T g+ +kkak, gl (x)+o(gq (X)),

Y x+a) —v{x) = 0, D] (vq(x)+

Setting m = 1 in this latter formula, we obtain

(lnx)a+! = By

T 95 +0 (957 ()) -

Yq(x) = -
q+1 = k!

Let us detail this expansion when q = 1. We first observe that

_ Inx — Hy—
o V) = (MR- ke
Using (10.4), we then obtain
1 m—1 j 1 1
il + (Inx) —
m]_OYl<X+m) nxm]Zotj)( )




Setting m = 1 in this latter formula, we get

Setting r = 5 for instance, we obtain

(Inx)? 1 11
7 Yk 12x2  720x4

Yi(x) = +0(x7?).

Generalized Liu’s formula. For any q > 1 and any x > 0 we have

_ (mx9*t (Inx)e +J°° -3

q+1 2x L o2 (In(x+t))97*(q — In(x + t)) dt.

Yaq (x) =

Series representations. Since the function gq(x) lies in Dy 1, we only have the

following series representations of yq(x).

e Eulerian and Weierstrassian forms. We have

(Inx)Y « /(n(x+%))9 (Ink)d

Yaq (x) =

(Inx)T i ((1n(x+k))q  (In(k+1))9%! — (lnk)q+1> .

X = x+k q+1

The series can be differentiated term by term infinitely many times. For in-
stance, we get

/ — (n(x+k))9*
'Yq(x) = l;)n(fc—l—k)Q(q_ln(x—i_k))

The analogue of Gauss’ limit coincides with the Eulerian form.

Gregory’s formula-based series representation. For any x > 0 satisfying the
assumptions of Proposition 8.11, we obtain

(lnx)a+? > (lnx)d
P

q+1
1n (x +k))d
. Zmnmz plRbr k)

Setting x = 1 in this identity (provided that x = 1 satisfies the assumptions of
Proposition 8.11), we obtain the Fontana-Mascheroni’s series expression for v

(In(k+1
Z\sz (B

This latter expression can be found in Blagouchine [20, p. 383] and the references
therein.
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Analogue of Gauss’ multiplication formula. The following analogue of Gauss’
multiplication formula was previously known (see also Blagouchine [19, p. 542]) but
it can be derived straightforwardly from our results.

For any m € N* and any x > 0, we have

m—1 . 1 q ;
xHjy _ _om (1) q 1 _
jZOYq( m > = q+1 (Inm) +ijO(j) Inm Yq—j(x)-

In particular,

= j m 1) 9+ d 1\’

Corollary 8.33 provides the following limits for x > 0

- j +1
i 1 (Inx)d
nllﬂloojzo () <1n m) Vo (m) —yqs(m) =~
1 1 q+1 q 1 j (lnx)q+1
. 1 (1 . 1 | g
”lllgloo q+1 (lnm> +Z(j) (lnm> Yq-j(mx) a1

j=0

For instance, setting q = 1 in these formulas yields

lim (v (mx) —ya(m) + (nm)(b(mx) —h(m)) = —(Inx)?,
niiinoo (yl(mx) - %(ln m)? + P (mx) ln m) = —%(lnx)2 .

Now, setting m = 2 in the multiplication formula, we obtain the following analogue
of Legendre’s duplication formula

q

1 2 1\ 9 1\’
Yq (g)+yq <x; ) _ _q+1<ln2) +2Y (%) (1n2> Yaui (x).

j=0

When q =0 and q = 1, the multiplication formula reduces to the known formulas

m—1 .
¥ ("“) — Mm@ —lam),

j=0 m
mot X+ m

vl( mJ) - —?(lnm)2+m(1nm)lb(x)+mY1(X)~
j=0

Analogue of Wallis’s product formula. The analogue of Wallis’s formula for the
function gq4(x) is

[e'9) q—1
(—1)* (ln]f)q = - (h;i)qlﬂ +> (9) (n2)97y;. (10.20)
k=1 j=0
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This formula was established by Briggs and Chowla [25, Eq. (8)]. For q = 1, it reduces
to

= Ink (In2)?
)= = — In2.
kgl( )= ,— Tyl
For q = 2, we obtain
- Ink)? In2)°
Z(—l)k(n]l() = —(ns) +v(In2)? +2y;In2.

These latter two formulas were also established by Hardy [47].

As an aside, let us establish conversion formulas between the sequences q — v
and q — 19 (1), where n(s) is the Dirichlet eta function introduced in (10.17) and
n(9) (1) stands for the limiting value of n(9)(s) as s — 1. To ease the computations,
let us instead consider the conversion formulas between the sequences q — vy4 and
q — Aq, where

1
Ag = m(1112)q+1+(—1)q+1n<q)(1), qeN.

Using (10.20), we can readily derive the following equations

Ag = ) (D29 y,  qeN (10.21)
0

=]
_

~
Il

These equations actually consist of an infinite consistent triangular system. Solving
this system provides the following conversion formula

q

B
Yo = ) () 027 A, qeN, (10.22)
k=0
that is,
B
Yq = q'i:l (In2) q+1+Z 1(1n2)q k=inglk+l(1) ) g eN.

Indeed, plugging (10.22) in the right side of (10.21) we obtain for any q € N

q—1 q—1 k B . )
D> (2 v = 3 ()29 Y () )k A
k=0 k=0 j=0 )
q71 - A]+1 q71 .
- 9) (In2)9 -1 2 979 By,
= (]) ( ) j+1 &= (k—]) k—j

where the inner sum reduces to 09—, The latter quantity then reduces to Ag, as
expected.
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Remark 10.10. The conversion formulas (10.21) and (10.22) are not quite new. In
essence, they were established by Liang and Todd [63, Eq. (3.6)] and Nan-Yue and
Williams [80, Egs. (1.9) and (7.1)]. ¢

Generalized Webster’s functional equation. For any m € N* and any a > 0,
there is a unique eventually monotone solution f: R, — R to the equation

._.

— 1
fix+aj) = —;(lnx)q
j=0

q
Sqam(x) = im Z( ) (In(am))’ Yq—j(x).

For instance, the unique eventually monotone solution f: Ry — R to the equation

namely

where

1
f(x)+f(x+1) = — glnx
is

f(x) = y1(x) =71 (%) +(1n2)1])(x)+%(1n2)2.

Rational arguments theorem. Let us apply Proposition 8.65 to the function
gq(x). For any a,b € N* with a < b and any j € {0,...,b — 1} we have

b ini
SPlgql = q“Z( ) (Inb)9 DL Lis(2)] L) (101 )

where Lig(z) is the polylogarithm function. Hence, we have

b-1

a i Dl
va(p) Ve = q“Z( ) (nB)*™ 3 (1= @y )OS Lis(2)] )1, -

j=0

We note that a more practical formula was derived in the special case when q = 1 by
Blagouchine [19] as a generalization of Gauss’ digamma theorem.

10.8 Higher order derivatives of the Hurwitz zeta
function

Let s € R\ {1} and q € N. Differentiating q times both sides of (10.15) we obtain

CV(s,x+1) = W(s,x) = ()9 x*(Inx)9, x>0,
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where ((9) (s, x) stands for D (s, x). This equation shows that the investigation of
the higher order derivatives of the Hurwitz zeta function can be carried out using our
results. To keep our presentation simple, we will focus on some selected results only.

The interested reader can find an earlier study of these functions in Ramanujan’s
second notebook [18, p. 36 et seq.].

ID card. The following basic information can be easily derived.

Js,q(x) Membership deg gs q £ge.q(x)
— x(—1Inx)A e*NDtNK>, ifs>1, -1 ¢l (s, x)
eenDli=sinke ifs<1. | +[1—s]4 | —C9(s)

We observe that this investigation can be regarded as a simultaneous generalization
of the studies of the Hurwitz zeta function and the generalized Stieltjes constants.
For the latter, we observe that

1
_1\9 13 - _ q
(—1) ggnlgs,q(X) X(lnX) :

Setting s = 0 in our results may also be very informative as it produces formulas
involving the well-studied quantities ¢(9(0) and ¢!9)(0,x) — ¢!9)(0) for any q € N.

Project 10.11. Find a closed-form expression for the integral
X
J Yq(t)dt.
1

We apply Proposition 8.20 to gq(x) = —%(lnx)q. Using (10.19) we obtain

x x+1 1
L Yq(t)dt = ZXL Yq(t)dt = fmZ(lnx)q+1
(_1)q+1
ﬁ 290,q+1(x) )
that is,
" _ (D g (a+1)
| vatar = S (oo - doo).
In particular,
(x) = ﬂD C(Q+l](0 ) O
Yq X - q+1 x y X)) -

Analogue of Bohr-Mollerup’s theorem. The function ((9)(s,x) can be charac-
terized as follows.

All solutions fs q: R, — R to the equation
fs,q(x +1) — fs,q(x) = gs,q(x)

that lie in K11—sl+ are of the form fs,q(x) = cs,q + (\9)(s,x), where
Cs,q € R.
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Extended ID card. The asymptotic constant olg ] satisfies the identity

1
olgs,ql = L C(q)(S,t—i— 1)dt—C(q)(s) = m_c(q)(s)_

Hence we have the following values

6-[95,51] O-[gs,q] [gs q]

oo, ifs>1, _a
(s s o1 | Tt ) | olgsgl = T GiAT g4 (1)

o Alternative representations of o[gs 4]

n-1 n [1—s]+ )
olgs,ql = Jim ng,q(k)—J1 Js,q(t) dt + Z GjA geq(n) |,
k=1 j=1
[1—s]+ )
olgsg] = D GA'goq(1)
k+1 [1—sl+ .
—Z |, gealtiat= 3 Gaiguqt
j=0

Setting s = 0 in the previous formulas, we obtain

(—1)%(q!+c(0) = gﬂ(i(mk)‘*{

k=1 1

k+1
Z( (Ink)d J (lnt)th).

k

n

(Int)9 dt — ;(lnn)q>

The left-hand quantity can actually be related to the Stieltjes constants in a
very simple way. Indeed, on differentiating both sides of (10.18), we obtain the
following surprising identity

3

(—1)9(q! + ¢'9)

e Generalized Binet’s function. For any r € N and any x > 0

x+1 T
]T+1[29$,q](x) = C(q)(s,x) _J C(q)(s;t) dt + Z Gj Ajilgs,q(xy

X j:1

e Analogue of Raabe’s formula. We have

X | B
J gS q(t) dt = q r(q+1’(s 1)1117(,) X>0)

(1—s)att ’
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and hence the analogue of Raabe’s formula is

J"‘Jrl _ Tg+1,(s—1)Inx)

(q)
) ¢Vs,t)dt = (1—s)q+1

s—1 Inx)’
- 1_Sq+1Z , x>0

Generalized Stirling’s and related formulas. For any a > 0 we have

[1—s]+
(s, x+a)— ' 9(s,x) — Z (;1) N7lgsqx) = 0 as x — 00,
j=1
with equality if a € {0,1,...,[1 —s]4+}. Also, we have the following analogue of
Stirling’s formula

x+1 [1—sl+ )
C(q)(s,x)—J (s, t)dt + Z Gj A]_lgs,q(x) — 0 as x — 00.
X j=1

Setting s = 0 in this latter formula and then simplifying the resulting expression, we
obtain

1
¢l9(0,x) +T(q+1,—Inx) + 5(—1)q+1(1nx)q -0 as X — 0o.

We also have
x+1

(s, x+a) ~ J (9 (s, 1) dt as x — 00.

X

Finally, if s > —1, then we have the following analogue of Burnside’s formula
C(q)(s,x)fj (s, t)dt — 0, as x — 00,

which provides a better approximation of ((9)(s,x) than the analogue of Stirling’s
formula.

Eulerian and Weierstrassian forms. If s > 1, then for any x > 0, we simply have

(9(sx) = =) goqlx+k)
k=0

and this series converges uniformly on R, and can be integrated and differentiated
term by term. If s < 1, then for any x > 0, we obtain the following Eulerian form

[—s]

(V(s,x) = (s) = —geq)+ D (;7)Ageq(1)
j=0

[1—s]

Z gsqx+k+Z Agsq()

k=1 j=0
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and the Weierstrassian form can be obtained similarly. Both associated series converge
uniformly on any bounded subset of [0,00) and can be integrated and differentiated
term by term. Note that the case where (s, q) = (0,2) can be found in Ramanujan’s
second notebook [18, p. 26-27].

Gregory’s formula-based series representation. For any x > 0 satisfying the
assumptions of Proposition 8.11, we have

x+1 0
O e AR UCT LS S VIS

x n=0

x+1
J '(s,1) dt—Z\GnHlZ V) gs,q(x +K).

X

Setting x = 1 in this identity (provided that x = 1 satisfies the assumptions of
Proposition 8.11) yields a series expression for ((9)(s) that is the analogue of Fontana-
Mascheroni series

(W) = qH Z |Gyl Z ) 9s,q(k+1),

which can also be obtained differentiating the analogue of Fontana-Mascheroni series
for the Hurwitz zeta function. For instance, we have

¢"(0) = —2+Z|Gnmz ) (In(k + 1))

and this latter value is also known to be (see, e.g., Berndt [18, p. 25])

1, m 1 5
2 “(In(2 .
5Y ~ o1 2(n( 7))* +v1

Analogue of Gauss’ multiplication formula. Upon differentiating the analogue
of Gauss’ multiplication formula for the Hurwitz zeta function, we immediately obtain
the following multiplication formula. For any m € N* and any x > 0, we have

m—1 q
¢ (s 55 = e 3 (T s v,
j=0 j=0

Moreover, Corollary 8.33 provides the following limit for any x > 0 and any s < 1

9 (s, mx) Iq+1,(s—1)Inx)

q—j > " !

n{linmz lnm ml-—s B (1—s)at!?

Also, for any s # 1, we have

q i )
. U (s, mx) — ¢ (s, m) q'—T(q+1,(s—1)lnx)
q q ) ) _ )
Jim > (§)m)e - = (1—s)ar |

j=0



211

Analogue of Wallis’s product formula. When s < 1, the form of the analogue
of Wallis’s product formula strongly depends upon the value of s. If s > 1, then we

have
n(q)(s) - i(_i#(_lnk)q
k=1
q »
= (Ws—273 (9) (In;)q ),

j=0

where s — 1(s) is Dirichlet’s eta function. Just as we did for the formulas (10.21)
and (10.22), we can easily establish the following conversion formulas for s > 1

=

1\97*
Mqls) = () (1112) ™), qeN,
0

=]

=~
I

Bq—k 1 q—k—1
(E) k+1 (1112) Hk+l(s)1 q €N7

~
o
—
w
“
I
M-

i
o

where
Hql(s) = 2571t (s) —=nl¥(s)) — ¢l (s), qeN.

10.9 The Catalan number function

The Catalan number function is the restriction to R, of the map x — C, defined on

c. — 1 (2x>.
x+1\x

This function satisfies the equation

6
x = 4— X+
Gy ( x+2>c

The additive version of this equation reads Af = g, where the function g is the
logarithm of a rational function. We observe that such equations have been thoroughly
investigated by Anastassiadis [7, p. 41] (see also Kuczma [57]).

The equation above shows that the Catalan number function can be investigated
using our results. Let us briefly study this function.

ID card. The function Cy is clearly a I'-type function and we immediately derive
the following basic information.

g(x) Membership | degg | Xg(x)
1n(4—i) C® N DL NK*® 0 In C,

Xx+2

Analogue of Bohr-Mollerup’s theorem. The function Cy can be characterized
as follows.
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All solutions f: Ry — R to the equation
(x+2)f(x+1) = (4x+2)f(x)

for which Inf lies in XK' are of the form f(x) = ¢ Cx, where ¢ > 0.

Extended ID card. We have the following values:

olg] olg] vlg]
1(B3+lng) [2(3+In) |1 (3+ns)

We also have the inequality
25 39 3
lylgll < §1n5 + §1n3 —161n2 + i 0.04

and the following representations

© 3({t)—13)

Ve = | e
1

0‘[9} = J ln Ct+1 dt
0

Moreover, the analogue of Raabe’s formula is

x+1 s x+1
ez (4x +2)*tz
J, mewa - ln<\/ﬁ(x+2)x+2>’ x>0,

Generalized Stirling’s and related formulas. For any a > 0, we have

Cxta a 4%
~ 4 and Cx ~ ——— as X — oo.

Cx x3/2 /1

Also, the analogue of Burnside’s formula gives

3
$ (¥
InCy —1In L —~ 0  asx— oo
VT (x+ 3)¥te

Restriction to the natural integers. For any n € N* we have

—

Cn = —— (™),

Eulerian and Weierstrassian forms. For any x > 0, we have

o Xty Co)
k:l(2

3 \x—1 3
dx+2 - k+2) (2 - x+k+2)
and -
X+2 s I LRI = N MU
x = e 2 Hizxe(de)(ZkJrl)_

dx 42

k=1 2k+1



Chapter 11

Defining new multiple log I'-type
functions

In the previous chapter, we tested our results on some multiple log I'-type functions
that are well-known special functions. It is clear, however, that there are many other
multiple log '-type functions that are still to be introduced and investigated, simply
as principal indefinite sums of standard functions.

In this chapter, we introduce and investigate the following functions (we use the
acronym PIS for “principal indefinite sum”)

e The PIS of the digamma function.
e The PIS of the Hurwitz zeta function.
e The PIS of the generating function for the Gregory coefficients.

The latter two examples are examined here in a broad way. A deeper investigation of
these examples can be carried out simply by following all the steps and recipes given
in Chapter 9.

11.1 The PIS of the digamma function

Let us see what our theory tells us when g(x) = {P(x) is the digamma function. We
first observe that g lies in €* N D! N K>,
Using summation by parts, we can easily see that

IPp(x) = (x—=1)(W(x) —1).
Moreover, from the identity H,_; = W (x) + v, we obtain immediately
L He 1 = (X - 1)(HX71 - 1)

This example may seem very basic at first glance, but since Hy is the discrete
analogue of the function Inx, we expect an important analogy between Zi(x) and

213
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YIlnx =InT(x), at least in terms of asymptotic behaviors. Actually, the analogue of
Burnside’s formula shows that the function

InT (x— ;) + %(1 — In(27))

is a very good approximation of X (x).
Interestingly, using (10.12) we can easily derive the following additional identity

(1—1n(27)) + DIln G(x), x >0,

N | =

Pp(x) =

where G is the Barnes G-function (see Section 10.5).

Project 11.1. Find a closed-form expression for the function £,\p?(x). Using again
summation by parts, we obtain

L2 (x) = (x =D (x) — (2x = 1) h(x) +2x —2 — .

We also note that the function \?(x) lies in €*° N D N K>, just as does the function
P(x). The investigation of this new function in the light of our results is left to the
reader. O

ID card. The following basic information about the functions {(x) and Z\(x) follows
trivially from the discussion above.

g(x) | Membership | degg 2g(x)
P(x) | € N D NK*® 0 x—1DW(Hx)—1)

Analogue of Bohr-Mollerup’s theorem. The function X1\(x) can be characterized
as follows.

All eventually conver or concave solutions f: R, — R to the equation
fix+1) = f(x) = P(x)
are of the form f(x) = ¢ + X(x), where c € R.
Extended ID card. It is not difficult to see that
! 1
olgl = J IP(t+1)dt = 5(1 — In(2m)).

0

Hence we have the values

Glg] olg] vlg]
(1—In(27)) | (1 —In(27) +v)

(0]

D=
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o Alternative representations of olg]

olgh = ~3v=Y (mk-wi- 5],
k=1
1 o 1
olgl = 3+ ({t}2> Pa(t) dt,

1
olgl = lim <n — 2) Pv(n)—InT(n) —n+ 1) .
e Alternative representations of y[g]

olgl = fo (w(m) e+ ) at,

1
1

ol = [ (w(m) i)+ m) dt.

o Generalized Binet’s function. For any q € N* and any x > 0,

JER) = S0 — £ (1~ In(2m) ~ () + 3 b(x)

T2
q—2
+ Y Gjra(—1)B(+1,%),
j=0

where (x,y) — B(x,y) is the beta function.

e Analogue of Raabe’s formula

x+1 1
J Dp(t)dt = S(1-m@n)+l(x), x>0

X

o Alternative characterization. The function f = X1 is the unique solution lying
in C° N X! to the equation

JXH f(t)dt = %(1 —In(27)) + InT(x), x > 0.

X

Inequalities. The following inequalities hold for any x > 0, any a > 0, and any
n € N*.

o Symmetrized generalized Wendel’s inequality (equality if a € {0, 1})

Zp(x+a) —ZP(x) —adp(x)] < la—1[Rp(x+a) —b(x]|

la — 1]
< [a] —-
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o Symmetrized generalized Wendel’s inequality (discrete version)

Zp(x) = FRWI(x)] < x—1pn+x) —bm) < [x] lx_”,

n

where
fbl(x) = Mm+x—1)Mn) —px+mn)) + (x — 1) p(x) + 1.

o Symmetrized Stirling’s formula-based inequalities

’Zﬂ) (x + ;) — %(1 —In(27)) —InT(x)

L (1—1n(27)) —InT(x) + %II)(X)

< ‘Zﬂ)(x) —5

1 1
< xlnx—InF(x)—Ell)(x)—x+§1n(27r) < P

o Generalized Gautschi’s inequality

(a—Ta)W(x+Ta]) < (a—Ta])(Z) (x+ [a])
< (ZP)x+a) = (Z)(x+ [a])
<

(a—T[aDw(x+ [a]).

Generalized Stirling’s and related formulas. For any a > 0, we have the fol-
lowing limits and asymptotic equivalence as x — oo,

SP(x+a) —ZP(x) —ap(x) — 0, SP(x+a) ~ InT(x),

N = —

L1 _1ni2m)),

TP(x) —InT(x) + = Pp(x) — 5(

L1 _m(2n).

th(x)—lnr(x—1> — 5

2

Asymptotic expansions. For any q € N* we have the following expansion as
X — 00

1
=

q
Th(x) = S(1-Tn(2m)+ Y i a(x) + O(thq(x)).
k=0

Setting q = 3 for instance, we get
1 1 1
2p(x) = S(1-In(2m) +InT(x) = Sb(x) + S ba(x) + O(x%).
Generalized Liu’s formula. For any x > 0, we have

SP(x) = ;(1—1n(2n))+1nr(x)—;Lp(x)—f ({@-é) Wy (x + 1) dt.

Limit and series representations. Let us briefly examine the main limit and series
representations of X1p(x). The additional representations obtained by differentiation
and integration are left to the reader.
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e Eulerian and Wezierstrassian forms. We have

TP(x) = —yx—P(x i( (x+k)— (k)—%),

TP(x) = —(1+y)x—v Z Px +k) —b(k) —xPi(k)).

k=1

o Analogue of Gauss’ limit. We have

IP(x) = (x =) +1+ lm (n+x—1)n) —px+n)).
Gregory’s formula-based series representation. For any x > 0 we have

SP(x) = %(1—1n(27‘r))+lnr( )_ﬂb +Z\Gn+2|B(n+1 X).

n=0

Setting x = 1 in this identity yields the following analogue of Fontana-Mascheroni’s
series

1
57,

|Gn| 1,1
Z = — 5 +ym@n-

and the right-hand value is precisely the generalized Euler constant y[\)] associated
with the digamma function. We also observe that this latter identity was obtained
by Kowalenko [52, p. 431].

Analogue of Gauss’ multiplication formula. Since we do not have any simple
expression for the function L, (), it seems difficult to find a usable multiplication
formula here. We had the same difficulty in the investigation of the Barnes G-function
(see Section 10.5). However, we can use Proposition 8.30 to derive the following
convergence result. For any m € N* we have

m—1

Zz (X+J>—m1nr(;)+;¢(;¢l) 5 ?(1—1n(27r)) as x — 0.
j=

Analogue of Wallis’s product formula. The following analogue of Wallis’s for-
mula was already found in Project 10.1

2n
lim <1n(4n)+2Z(1)k¢(k)> = .
k=1

Generalized Webster’s functional equation. For any m € N*, there is a unique
eventually monotone solution f: R, — R to the equation

m—1 .
f(x+ ]) — P(x)
— m

)
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namely

f(x) = X <x+ T;ll) — X (x).

Analogue of Euler’s series representation of y. We have (Z{)/(1) = -1 —vy
and

(WMD) = kbea (1) = (FDRKRICK),  k>2.
The Taylor series expansion of X1p(x + 1) about x =0 is

Tp(x+1) = (~1-yx+) k(=% K<L
k=2
Integrating both sides of this equation on (0, 1), we obtain

- k) 1
k;(—mk—“ = 14 (v —In(2m)).

Analogue of the reflection formula. For any x € R\ Z, we have

SP(1+x)+ZP(1—x) = 1—mxcot(mx).

11.2 The PIS of the Hurwitz zeta function

In this section we apply our theory to investigate the function
def
X = Cz(S,X) :e ZX C(S)X)

for any fixed s € R\ {1}.
Using summation by parts, we observe that if s # 2 we have

Ca(s,x) = (x—1)¢(s,x) = C(s —1,x) + ¢(s —1).
If s =2, then
(2(2,x) = LaPi(x) = (x—1)a(x) +b(x) +v.

To keep this investigation simple, here we focus on some selected results only and
we restrict ourselves to the case when s > 2, for which the sequence n — ((s,n)
is summable. In this case, by (6.23) we obtain immediately the following surprising
identity (see also Paris [83])

D Us,k) = Us—1).
k=1

We also have
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ID card. We can easily summarize the basic information as follows:

gs(x) Membership deggs | Xgs(x)
Us,x) | €°NDITNXK® | —1 | La(s,x)

Analogue of Bohr-Mollerup’s theorem. The function (5(s,x) can be character-
ized as follows.

All eventually monotone solutions fs: R, — R to the equation
fs(x+1) —fs(x) = (s,x%)

are of the form fs(x) =cs + (a(s,x), where cs € R.

Extended ID card. We immediately have

olgs) = Y clso— [ttt = 22 g5

s—1
k=1 1

Hence we have the values

lgs] olgs] vlgs]
oo | £=2((s—1) | vlgs] = olgs]

e Alternative representations of olgs] = v[gs]

1 00
G[gs] = J C2(S)t + 1) dt = J (C(S, Ltj) - C(S,t)) dt7

0 1

olgs] = E C(s)+s J (1 {t}) ((s+1,t)dt.
2 1 \2
e Analogue of Raabe’s formula
x+1 _
J Cols, t) dt = c(s—1)—C(STll’"), x > 0.

Inequalities and asymptotic analysis. For any a > 0 and any x > 0, we have

|C2(S,X+C1) _CZ(SaX)l < ’—a-‘ C(S7X))

s —als =1+ LB gy

In particular, we have

Cals,x) — C(s—1) as X — 00.
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Generalized Liu’s formula. For any x > 0 we have

C(S_]-:X) 1
8—71 3 C(s,x)

+s J:o ({t}—;) {(s+1,x+1t)dt.

Ca(s,x) = ((s—1)—

Eulerian and Weierstrassian forms. For any x > 0, we have

[e¢]

Gls,x) = Us—1) =) s, x+Kk).

k=0

and this series converges uniformly on R, and can be integrated and differentiated
term by term.

Gregory’s formula-based series representation. For any x > 0 we have

Cs —

Cals,x) = ((s—1) —8_71

Z Gni1 AL(s,X)

n=0
= s—1)— Z|Gn+1| Z s, x+k).

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series

-2
Z|Gn+1|z (s, k+1) = ST Cls—1).

Analogue of Wallis’s product formula. The analogue of Wallis’s formula is

D (FDMNs, k) = (2-20)¢s) + (1 -2 s — 1)
k=1

1
—ob=s k+ = ).
S ¢+ 3)
k=0
This formula is actually obtained by combining Proposition 6.7 with the duplication
formula for the Hurwitz zeta function

2¢(s,2x) = 21_SC(s,x)+21_SC(s,x+;>_

On the other hand we also have (see Paris [83])

D (DM Ns, k) = (1-27%)4(s), s>

k=1
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Combining this formula with the analogue of Wallis’s formula, we derive the following
identity

o0

Y ¢ (s,k+ ;) = (25T —27Y)(s) + (25t —1) (s — 1).

k=0

Taylor series expansion. We have
(£g9)™M(1) = —KI () Us+k—1), keN-

The Taylor series expansion of (5(s,x + 1) about x =0 is

Ga(s,x+1) = —Z(?)C(s+k—1)xk, x| < 1.
k=1

11.3 The PIS of the generating function for the Gre-
gory coeflicients

Let us investigate the function Lh, for any p € N*, where h,: R, — R is defined by

the equation

xP .
hp(X) = m = XPIII(X+1) forx >0

and li(x) is the logarithmic integral function defined for all positive real numbers
x # 1 by the integral

* 1
li = — dt.
ix) L Int

Incidentally, when p = 1, this function reduces to the ordinary generating function
for the sequence n — G,,. That is,

hi(x) = Zann, x| < 1.
n=0

More generally, h,(x) = xP~'h;(x) is the ordinary generating function for the right-
shifted sequence n — G,,_p41, that is the sequence

o,...,0,Gq, Gy, Go, ...
with p — 1 leading 0’s.
We also note that the function h,, has the following integral representation
1

hy(x) = xpflj (x +1)%ds.
0
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This latter representation actually suggests introducing, for any p € N*, the function
gp: Ry — R defined by the equation
J‘ ! ox(x+1)P !

(x +1)5TP1ds

= for x > 0.
0 1n(x+ 1)

Ip (x) =

The conversion formulas between the h{)s and the g{,s are simply given by the fol-
lowing equations

=
=z

I
M=

(P~ H hi(x),

i
i

(1P *(271) gk(x).-

13:
=z

I
M=

~
[I
-

In particular, we have g; = h;.

Since the function g, has a nicer integral form than h,,, for the sake of simplicity
we will investigate the function Zg,, for any p € N*. By Proposition 5.7, the function
Zh, can then be obtained by applying the operator ~ to both sides of the second
conversion formula above.

Remark 11.2. We observe that the function gy, is also the ordinary generating func-
tion for the sequence n — P, (p—1), where 1, is the nth degree Bernoulli polynomial
of the second kind (see Section 12.8). O

ID card. It is not difficult to see that both g, and h, lie in C* N DP N K> and
hence also in XP. We also have deg g, =degh, =p — 1.

From the integral form of g, above, we can easily derive the following explicit
form of Xg, (after replacing 1 — s with s in the integral)

1 1

Zgp(x) = | Cs—p2ds—| Cs—pxs s
0 0
that is,
1
Igplx) = Tp—J C(s—p,x+1)ds,
0
with
1
Tp = —1+J C(s—p)ds,
0

where ((s,x) is the Hurwitz zeta function.

Remark 11.3. For any integer n > 2, the harmonic number function of order n is
defined on (—1, 00) by

x = HM = ¢(n)—n,x+1),

see, e.g., Srivastava and Choi [93, p. 266]. Extending this definition to noninteger
orders by writing

HE) = ¢(s)—(s,x+1), seR\{1}
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we obtain the following very compact integral representation
1

Igp(x) = —1—|—J HE=P) ds, x > 0. ¢
0

Analogue of Bohr-Mollerup’s theorem. Thus defined, h,, is a log [},-type func-
tion that lies in € N DP+! N K>®, This function can be characterized as follows.

All solutions f: R, — R to the equation Af =h, that lie in XP are of
the form

P
fx) = cp+ ) (1P *(P11) Zgr(x),
k=1
where ¢, € R.

Extended ID card. Let us compute the asymptotic constant associated with the
function g,. We have

1 1,01
olgp] = Lng(tJrl)dt = TprJO ((s—p,t+2)dtds
12s+p
e TP+J 7(18-
0oS+P

Using the change of variable u = 257P, we finally obtain

2p+1
olgpl = Tp +J' —dt = 1 +1i(2P ) —1i(2P).
2P Int
Now, we have
X 1
1 s+p __ 25+p
J gp(t)dt = J et 1) ds
1 0 S+P

= li((x + 1P —1i((x + 1)P) —1li(2P ) + 1i(2P)

and hence the analogue of Raabe’s formula is

JXH Igp(t)dt = T +1L((x + 1P —1i((x +1)P), x > 0.

X

Generalized Stirling’s and related formulas when p = 1. For any a > 0, we
have the following limits and asymptotic equivalence as x — oo,

X

Zgi(x+a)—Zgi(x) —am

— 0,

Zg1(x) —li((x + 1)%) + li(x + 1) + - T,

X
2ln(x+1)
Ygi(x+a) ~ H((x+1)%) —1li(x +1).
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Upon differentiation,

1
X — =
ngl(x)—m — 0, DkJrlZg]_(X) — 07 kGN*,
X
DZgl(x+a) ~ m,

where )

DXgi(x) = L(s—l)é(s,x—kl)ds.

Limit and series representations when p = 1. The Eulerian and Weierstrassian

forms are
o0
£g1(x) = —g1(x) +xg1(1) = D (g1(x+k) — g(k) —xAkgs(k))
k=1
and -
Zg1(x) = —g1(x) +xDIgi(1 Z g1(x + k) — g(k) —xg](k)),
where

1 1

(s—1)(s,2)ds = %—J s¢(1—s)ds.

0

oot - |

0

Gregory’s formula-based series representation when p = 1. Proposition 8.11
provides the following series representation: for any x > 0 we have

Yg91(x) = T A+li((x+1)%) —li(x+1)— ZGnHA g(x

n x+k
ln (x+k+1)°

Ty A li((x +1)%) —li(x + 1) — Z|Gn+1\ Z

Setting x = 1 in this identity, we obtain the following analogue of Fontana-Mascheroni’s
series

. k+1
0'[91] = T +11( —11 Z|Gn+1| Z n m

Analogue of Gauss’ multiplication formula. For any m € N* and any x > 0, we
have

m—1 J 1 m—1 ]
;ng (x+m) = mT, — J ZOC<s—p,x+1+ )ds.
)= )

Using the multiplication formula for the Hurwitz zeta function, we then obtain the
following analogue of Gauss’ multiplication formula

m—1 . 1
Zgp (x—i— 1;) = mTp—J m* P {(s —p, mx + m) ds.
j=0 0
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Now, using (8.15) we obtain

mo () = B (W)L ()

j=0

1
- jmS—P(C(s—p,mﬂ)—C(s—p,x+m))ds.
0

Corollary 8.33 then tells us that the sequences
1
m — J m* P ({(s —p,2m) — (s — p, mx +m)) ds
0

and

1
m J ms P ({(s—p,m+1)— (s —p,mx+m))ds
0

converge to the integrals

[[opwar ana [ gpar,

respectively.
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Chapter 12

Further examples

The scope of applications of our theory is very wide since it applies to any function
lying in the domain of the map . In Chapter 10, we made a thorough study of some
standard special functions. In Chapter 11, we defined and investigated new functions
as principal indefinite sums of known functions. In the present chapter, we briefly
discuss further examples that the reader may want to explore in more detail.

12.1 The multiple gamma functions

The multiple gamma functions introduced in Section 5.2 can also be studied through
the sequence of functions Gg, Gy, .. ., defined by (see Srivastava and Choi [93, p. 56])

Gp(x) = )", peNl
Equivalently, we have Gg(x) = x and
InGp(x) = ZlnGp_1(x) for all p € N*.

Clearly, the function In G, _;(x) lies in €*° N DP N K> and we have deg(lnoG,) = p.
Moreover, this sequence of functions can naturally be extended to p = —1 by defining

1
Goilx) = 1+ -.
X

Just as for the gamma function and the Barnes G-function, we can derive the
following asymptotic equivalence: for any a > 0,

P
Gp(x+a) ~ HGp,j(x)(?) as x — 0o,
j=0
with equality if a € {0,1,...,p}. We also have the following product representation

1 = Gpo1(k)
Gp-1(x) 1% Gpoalx+k)

x

Gp2(K)*Gp (k) .- Gy (1)

Gp (x) =

227
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and the recurrence formula

InGp(x) = —(x—1)0[DInoGy_4] —&—J' IDIn Gy (t) dt.
1

For example, one can show that
1 1 x—1
InGz(x) = — gx(x— 1)(2x —5) + ZX(X_ 2) In(27) + ( 5 )lnr(x)

— 52X =3P 00+ b sx) —xb (1),

This latter formula can also be established using the characterization of G; as a
3-convex solution to the equation Af(x) = In Gy(x).

12.2 The regularized incomplete gamma function

Consider the 2-variable function Q(x,s) = I'(x,s)/T(x) on R%, where I'(x,s) is the
upper incomplete gamma function. Thus defined, the function Q(x,s) satisfies the
difference equation
e Ss
1) — = -
QU +1,5) - Qlxs) = "
For any s > 0, we define the function gs: Ry — R by
e 5s*
Mx+1)"

This function lies in C°ND 1 NK> and has the property that g, (x) = Q(x,s)—e .
We also note that the Eulerian form of Q(x,s) is

gs(x) =

B 7°° e e Ix+1)
Qlx,s) = 1 égs(erk) =1 r(x+1)Zr(x+k+1)S

k=0
e o ik
- 1> —k
Mx+1) ];J" S

where x=K = I'(x + 1)/T'(x + k+ 1) for any k € N.

12.3 The error function

Recall that the Gauss error function erf(x) is defined by the equation

2 (" 2
erf(x) = — J e tdt forx>0.
VT Jo
To study this function, we could for instance work with the function g(x) = Aerf(x).
Instead, let us consider the function g: Ry — R defined by the equation

_ 2 —
g(x) = ﬁe

x2

for x > 0.
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It clearly lies in C*® N D~ N X*. Thus, the Eulerian form of g is given by the
identity

2 =, _
Ig(x) = ﬁ Z(e (+1)2 _ (k+x)2)‘
k=0

The generalized Stirling formula yields the following limit
erf(x) + 2 i e (kh)? 4 g as X — 00
VTS '

Incidentally, the analogue of Legendre’s duplication formula provides the surprising
identity

Z(e*(k+l]2,ef(kJr%)Q,ef(kerT‘l)Q+e*(k+%]2767(%]Z+e*(k2"‘]2) = 0.

12.4 The exponential integral

Recall that the exponential integral E;(x) is defined by the equation

00 e—t
Ei(x) = J —dt for x > 0.
« t
Similarly to the previous example, let us consider the function g: Ry — R defined
by the equation

e*X
g(x) = ™ for x > 0.

It lies in C*° N D! N K. Thus, the Eulerian form of £g is given by the identity

0 so—(kt1) g (kHx)
e e
Tglx) = kZ_O< k+1  k+x )

The generalized Stirling formula easily provides the following convergence result

i o— (k%)
Ei(x) — — 0 as x — 00.
= k+x

Moreover, the analogue of Raabe’s formula is

x+1
J Yg(t)dt = 1—In(e—1)—E;(x), x>0.

X

12.5 The hyperfactorial function

The hyperfactorial function (or K-function) is the function K: R, — R, defined by
the equation In K = Zg, where the function g(x) = xInx lies in €*° ND? N K>. Since
we also have

g(x) = x+ A o(x) =P _2(1),
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we immediately derive (see also Example 8.21)
InK(x) = Zg(x) = (’2‘) +UP o(x) —xP_2(1) = (x—1)InT(x) —InG(x).

Actually, g also corresponds to the special case when (s, q) = (—1,1) of the function
gs,q investigated in Section 10.8. Thus, we also have

Zg(x) = C/(717X)7C/(71)7

where ('(—1) = % —1InA. Finally, we note that the integer sequence n — K(n) is
the sequence A002109 in the OEIS [90].

12.6 The Hurwitz-Lerch transcendent

The Hurwitz-Lerch transcendent ®(z,s,a) is a generalization of the Hurwitz zeta
function defined as an analytic continuation of the series

o]

Z la+k)~s

k=0

when |z] < 1 and a € C\ (—N) (see, e.g., Srivastava and Choi [93, p. 194]). It satisfies
the difference equation

O(z,s,a+1)—z1D(z,5,a) = —z ta s,

It follows that the modified function

D(z,s,a) = —zD(z,s,a)

satisfies the difference equation

D(z,s,a+1)—D(z,s,a) = z%a°.

Thus, for certain real values of z and s, the restriction to R, of the map a — ®@(z,s, a)
fits the assumptions of our theory. Its investigation is left to the reader.

12.7 The Bernoulli polynomials

Recall that, for any n € N, the nth degree Bernoulli polynomial B, (x) is defined by

the equation
n

Bn(x) = Z () Bk x*  forx € R,
k=0
where By is the kth Bernoulli number. This polynomial satisfies the difference equa-
tion
Bn(x+1) —Bn(x) = nx™ L
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Thus, the function g,: R, — R defined by the equation g,(x) = nx™! for x > 0
lies in C*° N D™ N K> and has the property that

Ign(x) = Bn(x) —Bn(1),
that is, in view of (10.16)
Zgn(x) = n¢(l—n)—nf(1l—mn,x), n € N*.
Thus, the nth degree Bernoulli polynomial can be characterized as follows.

All solutions f,: Ry — R to the equation f,(x +1) —f(x) = nx™!
that lie in X™ are of the form f,,(x) = cn + Bn(x), where ¢, € R.

Using the generalized Webster functional equation (Theorem 8.71), we can also easily
characterize the nth degree Euler polynomial E,, (x), which is defined by the equation

gn+l x+1 X
En(x) = ntl (Bn+l < 9 >Bn+1 (2))

We then obtain the following statement.

All solutions fi,: Ry — R to the equation f(x+ 1)+ f(x) =2x" that
lie in X™ are of the form f(x) = cn + En(x), where c, € R.

Finally, we also easily retrieve the multiplication formula:
m—1 .
1
Z Bn <X—~_J> = ? Bn(x) X > 0
= m m

12.8 The Bernoulli polynomials of the second kind

For any n € N, the nth degree Bernoulli polynomial of the second kind is defined by
the equation

x+1
Pn(x) = J (Y)dt  forx>0.

n
xX
In particular, we have ), (0) = G,. Also, these polynomials satisfy the difference

equation

Pnt1(x+1) —Pnpi(x) = Pnlx).

Thus, the function g, : Ry — R defined by the equation g, (x) = ¥n (x) for x > 0 lies
in €®° N D™ N K> and has the property that

Ign(x) = Ynp1(x) —Pny1(1).
Thus, the Bernoulli polynomials of the second kind can be characterized as follows.

All solutions f,,: Ry — R to the equation f(x + 1) — f(x) = Pn(x)
that lie in K™ 1 are of the form f..(x) = cn + Pny1(x), where c, € R.
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Chapter 13

Conclusion

Krull-Webster’s theory offered an elegant extension of Bohr-Mollerup’s theorem and
has proved to be a very nice and useful contribution to the resolution of the dif-
ference equation Af = g on the real half-line R,. In this book, we have provided
a significant generalization of Krull-Webster’s theory by considerably relaxing the
asymptotic condition imposed on the function g, and we have demonstrated through
various examples how this generalization provides a unified framework to investigate
the properties of many functions. This framework has indeed enabled us to derive
several general formulas that now constitute a powerful toolbox and even a genuine
Swiss Army knife to investigate a large variety of functions.

The key point of this generalization was the discovery of expression (1.4) for the
sequence n — fh[gl(x) for any p € N. We also observe that our uniqueness and
existence results strongly rely on Lemma 2.7 together with identities (3.3) and (3.8).
These results actually constitute the common core and even the fundamental corner-
stone of all the subsequent formulas that we derived in this book. For instance, the
generalized Stirling formula (6.21) has been obtained almost miraculously by merely
integrating both sides of the inequality given in Lemma 2.7 (see Remark 6.16). Sim-
ilarly, Gregory’s summation formula (6.33) has been derived instantly by integrating
both sides of identity (3.8), and we have shown how its remainder can be controlled
using Lemma 2.7 again.

Our results clearly shed light on the way many of the classical special functions,
such as the polygamma functions and the higher order derivatives of the Hurwitz
zeta function, can be systematically studied, sometimes by deriving identities and
formulas almost mechanically.

Beyond this systematization aspect, our theory has enabled us to introduce a
number of new important and useful objects. For instance, the map X itself is a
new concept that appears to be as fundamental as the basic antiderivative opera-
tion (cf. Definition 5.4). Both concepts are actually strongly related through, e.g.,
Propositions 6.19, 6.20, and 8.18. Other concepts such as the asymptotic constant
and the generalized Binet function also appear to be new fundamental objects that
merit further study. For instance, it is remarkable that the asymptotic constant ap-
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pears not only in the generalized Stirling formula (Theorem 6.13), but also in many
other important formulas, such as the generalized Euler constant (Proposition 6.36),
the Weierstrassian form (Theorem 8.7), the analogue of Raabe’s formula (Propo-
sition 8.18), the analogue of Gauss’ multiplication formula (Proposition 8.28), the
asymptotic expansion (Proposition 8.36), and the generalized Liu formula (Proposi-
tion 8.42).

Our work has also revealed how important and natural are the higher order con-
vexity properties. Although these properties seem to be still poorly used in math-
ematical analysis, they actually constitute an essential and highly useful ingredient
in the development of our theory and therefore also merit further investigation (see,
e.g., Proposition 4.14 and Remark 4.15).

In conclusion, the results that we have obtained as well as the new concepts that
we have introduced and explored show that this area of investigation is very rich and
intriguing. We have just skimmed the surface, and there are a lot of questions that
emerge naturally. We now list some below.

¢ Find a simple characterization of the domain of the map X (see Proposition 5.21
and Conjecture 5.23).

e Find necessary and sufficient conditions on the function g to ensure both the
uniqueness and existence of solutions lying in XP to the equation Af = g (cf.
Webster’s question in Appendix C).

e Find a natural extension of the map ¥ to a larger domain, e.g., a real linear
space of functions that would include not only the current admissible functions
but also every function that has an exponential growth.

e Find a general method to determine a simple or compact expression for the
asymptotic constant o[g] associated with any function g lying in €% N dom(X)
(cf. our discussion in Section 8.5).

e Find general methods to determine analogues of Euler’s reflection formula (cf.
our discussion on Herglotz’s trick in Section 8.9) and Gauss’ digamma theorem
for any multiple log I'-type function.

e Find necessary and sufficient conditions on the function g for the function Xg
to be of class C* or even real analytic.

e Find an extension of our theory to functions of a complex variable. On this
issue, it is noteworthy that a very nice “complex” counterpart of Bohr-Mollerup’s
characterization of the gamma function was established by Wielandt (see, e.g.,
Srinivasan [92] and Srivastava and Choi [93, p. 12] and the references therein).

e Find an extension of our theory by replacing the equation Af = g with the more
general first-order linear difference equation

flx+1)—af(x) = g(x),
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where a is a given constant. Consider also linear difference equations of any
order. Partial results along this line can be found, e.g., in John [49, Theorem

c).
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Appendix A

Higher order convexity
properties

Summary: We establish a number of basic facts about higher order convexity and
concavity properties with the aim of proving Lemma 2.6.

Lemma 2.6 is a fundamental element of our theory. It can be derived from more
general results established by Kuczma [61, Chapter 15|. However, this derivation is
not immediate and actually requires considerable attention. In this appendix, we
prove Lemma 2.6 almost from scratch and using elementary means only.

Let I be an arbitrary nonempty open real interval. We first observe that for any
functions f, g: I — R and any system xg < x; < -+ < X, of n+1 points in I, we have

(f+g)lxo, X1, .yxn] = flxo,X1,...,%n] + glxo,X1,. .., Xnl.

Moreover, for any ¢ € R, if the function h: I — ¢ — R is defined by the equation
h(x) = f(x + ¢) for x € [ — ¢, then

hixg,X1,...,%Xn)] = flxg+c¢,x1+¢,...,xXn +cl.

These properties are immediate consequences of identity (2.4).

We now present a proposition and an immediate corollary. Let A, denote the
forward difference operator with step h.

Proposition A.1. For any n € N, any system xg < x; < -+- < Xn, of n+ 1 points
in I, any function f: I - R, and any h € R\ {0} such that xo + h,xn + h € I, we
have

n

Zf[xo,...,xk,karh,...,xn +hl.
k=0

1
E(A[h}f) [X0,X1, .-+, Xn)
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Proof. Using a telescoping sum, we obtain

%(A[h]f)[xo,xl,...,xn} = % (flxo + hyxy +h,...,xn +h] —flxg, X1,...,%n])
1 n
= & (flxo,-- -, Xk + Ny Xka1 + R, .oy X + hl
k=0
— f[x0, - -y XKy Xkt1 + hy ..o, X0 4+ H]).
We then conclude the proof using the recurrence relation (2.3). O

Corollary A.2. Let f lie in K" (I) for some p € N and let h € R\ {0}. If the
function %A[h]f is defined on 1, then it lies in Kﬁfl(l).

We can now readily see that Lemma 2.6(b) is an immediate consequence of Corol-
lary A.2 (just take h = 1).

The next result establishes Lemma 2.6(c). Let us first observe that a pointwise
limit of functions lying in K% (I) also lies in KV (I). This fact can be proved straight-
forwardly using identity (2.4).

Corollary A.3. If f: I — R is differentiable and lies in XV (I) for some p € N,
then the derivative f' lies in KP *(I).

Proof. 1t is clear that the derivative f’ is the pointwise limit of the sequence n — f,,
where, for each n € N*, the function f,,: I — R is defined by the equation

fn = nAp/f for n € N*.
We then conclude the proof using Corollary A.2. O

We now have the following corollary, which follows from Proposition 2.1. It im-
mediately establishes Lemma 2.6(d).

Corollary A.4. If f: 1 — R is differentiable and f' lies in KK_I(I) for some
p €N, then f lies in K¥ (I).

Proof. This result is an immediate consequence of Proposition 2.1 (just use identity
(2.7) withn=p+1). O

It remains to establish Lemma 2.6(a). To this end, we present the following
technical lemma, which provides a test for differentiability of real functions on I.

Lemma A.5. Letn € N, let a,xq,...,xXn be n+ 1 pawrwise distinct points in 1
and let f: I — R. If the limat

lim fla,a+h,x1,...,Xn]
h—0

exists and is finite, then f s differentiable at a.
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Proof. This result can be easily proved by induction on n using the recurrence rela-
tion (2.3). To simplify the computations, let us consider the first two cases only. For
n = 0, we have trivially

lim fla,a+h = Lm0 rW=f@
h—0 h—0 h
and f is clearly differentiable at a if this limit exists and is finite. For n = 1, we get

fla,x1] — fla,a + h]
X1 —a—h

fla,a+h,x;] =

and hence

lim fla,a+h] = fla,x;] — lim (x; —a—h)fla,a+ h,x4]
h—0 h—0
and this limit is finite if so is the right-hand limit. The induction process is now

clear. O

We now have the following proposition.

Proposition A.6. Iff lies in X% (1) for some integer p > 2, then f is differentiable
on 1.

Proof. Let a € 1 and let | be a compact subinterval of I whose interior contains a.
Let Jp, 11 denote the set of tuples of IP"! whose components are pairwise distinct. By
Lemma 2.5, the restriction of the map

(zo,..-,zp) = flzo,...,2p]

to Jp+1 is increasing in each place, hence this map is bounded on J, 1 NJP T,

Let x1,...,Xp_2 be p — 2 pairwise distinct points in J, and distinct from a, and
let hy, hy be sufficiently small distinct nonzero real numbers such that a+hy,a+hy
lie in J. Using (2.3), we get

fla,a+hy,a+ha,xq,...,Xp_2]

fla,a+hg,x1,...,xp—2] — fla,a+hy,x1,.. ., Xp_2]
hy — hy

Thus, there exists Cj > 0 such that
Ifla, a +ha,x1, ..., Xp—2] — fla,a+hy,x1,...,xp 2] < Cjlhy —hyl.
It follows that for any sequence n — h,, converging to zero, the sequence
n — fla,a+hn,x1,...,Xp—2]

is a Cauchy sequence whose limit does not depend on the sequence n — h,,. There-
fore, the limit

lim fla,a +h,x1,...,Xp_2]

h—0

exists and is finite. By Lemma A.5, f is differentiable at a. U
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We are now in a position to prove Lemma 2.6(a).
Proposition A.7. If f lies in JCKH(I) for some p € N, then f lies in CP(I).

Proof. We proceed by induction on p. The case when p = 0 is folklore and can be
found, e.g., in Artin [11, Theorem 1.5]. Suppose that the result holds for some p € N
and let us show that it still holds for p + 1. Let f lie in UCRH(I). By Proposition A.6
and Corollary A.3, f is differentiable on I and f’ lies in IKKH(I). Using our induction
hypothesis, we see that ' lies in CP(I), and hence f lies in CP1(I). O

Let us end this study with an interesting generalization of Lemma 2.5. It is an
immediate corollary of the following proposition.

Proposition A.8. Letn,m € N, let xo,...,Xn—1,Yo0,--.,Ym be n+m+1 pairwise
distinct points in 1, let f: I - R, and let g: I\ {xg,...,xn—1} = R be defined by
the equation

g(x) = flxo,---yXn_1,%] forx € I\{x0,...,Xn_1}

Then we have
glyo,-- - yml = flxo,...,xn-1,Y0,.--,Yml.

Proof. This result can be easily proved by induction on m for any fixed value of n,
simply by using the recurrence relation (2.3). To simplify the computations, let us
consider the first two cases only. For m = 0, we have trivially

glyol = 9glyo) = flxo,--.,%n—1,Yol.
For m =1, we have

g(y1) — g(yo) flxo, ..., Xn—1,Y1] — flxa, ..., Xn—1,Yo]

[ y ] et g
g, U1 Y1 —Yo Y1 —Yo
- f[x07"'$anl)yO)yl]-
The induction process is now obvious. O

Corollary A.9. Letj,p € N, with j <p, and let J;, denote the set of tuples of
DU*! whose components are pairwise distinct. A function f: I — R lies in K% (1)
if and only if the restriction of the map

(z0y..+,25) — flzo,..., 2]

to Jj41 25 (p —j)-convez in each place.



Appendix B

On Krull-Webster’s asymptotic
condition

Summary: We show that our uniqueness and existence results fully generalize a recent
attempt by Rassias and Trif [86] to solve the particular case when p = 2.

Recall that the original asymptotic condition imposed by Krull and Webster on
the function g is that, for each x > 0,

gx+t)—g(t) — 0 as t — 0o}

see Eq. (1.2). Using our notation, this means that the function g lies in R}. Geo-
metrically, this condition also means that the chord to the graph of g on any fixed
length interval has an asymptotic zero slope. Ounly fixed length intervals whose left
endpoints are integers are to be considered if the condition reduces to requiring that
g € RY. The restriction of our uniqueness and existence results to the case when
p = 1 shows that this condition can actually be relaxed into g € D, which means
that the chord to the graph of g on any interval of the form [n,n + 1], n € N*, has
an asymptotic zero slope. The function g(x) = Inx is a typical example that shows,
just as does every function whose derivative vanishes at infinity, that those functions
need not behave asymptotically like constant functions.

It remains, however, that Krull-Webster’s asymptotic condition is rather restric-
tive. As already mentioned in Chapter 1, this condition is not satisfied by the func-
tions g(x) = xIlnx and g(x) = InT(x). To overcome this restriction, Rassias and
Trif [86] proposed a modification of Webster’s results by considering solutions lying
in X? and replacing the asymptotic condition with a more appropriate one. Specifi-
cally, they considered any function g: R, — R for which there exists a number a > 0
such that

tlirgo gx+t)—g(t)—xlnt = xlna, for all x > 0. (B.1)

It turns out that both functions g(x) = xInx and g(x) = InI'(x) satisfy this alternative
condition. However, the identity function g(x) = x does not.
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Let us now show that our asymptotic condition that g € D% generalizes not only
Rassias and Trif’s (B.1) but also many other similar conditions.

Proposition B.1. Let ¢: R, — R and suppose that g: R, — R has the property
that, for each x >0,

glx+t)—gt)—xe(t) — 0 as t — oo.

Then g lies in R2 C D3. In particular, R contains all the functions that satisfy
Rassias and Trif’s condition.

Proof. For any t > 0 and any g: Ry — R, define the function p{[g]: [0,00) — R by
the equation

pPlgl(x) = glx+1t)—g(t) —x@(t) for x > 0.

Let also R be the set of functions g: R, — R with the property that, for each x > 0,
pPlgl(x) — 0 as t — oo. Then we immediately see that

pilgl(x) = pPlgl(x) —xp{lgl(1),

which shows that R¢ C R%. Now, if g satisfies Rassias and Trif’s condition, then it
lies in the set Ug~oRE ¢, where @4(x) = In(ax), and hence it also lies in RZ. O

Proposition B.1 can be generalized to Rf for any value of p > 2 as follows.

Proposition B.2. Let p > 2 be an integer, let @1,...,0p_1: Ry — R, and sup-
pose that g: Ry — R has the property that, for each x > 0,

p—1
g(x—i—t)—g(t)—Z(’j‘)(pj(t) — 0 as t — oo.
j=1

Then g lies in RE C Df.

Proof. For any t > 0 and any g: Ry — R, define the function p{[g]: [0,00) — R by
the equation

p—1
pPlglx) = glx+t)—g(t)— Y (¥) (1),
j=1

Define also the functions 11)?'1[9], o, WPP[gl: [0,00) — R recursively by the equa-
tions 11)?’1[9] = p?lgl] and
VP g = Pgl - () WPelG),  j=1,...,p 1L
Then, it is not difficult to see that
j—1

PIglx) = pPlglx) — Y (V)(Atg(t) — @i(t))
1

i

and hence VP [g] = pJ[g]. Thus, if the function g: R, — R has the property that,
for each x > 0, pP[g](x) — 0 as t — oo, then it lies in RE. O



Appendix C

On a question raised by Webster

Summary: We discuss conditions on the function g to ensure both the uniqueness
(up to an additive constant) and existence of solutions to the equation Af = g that
lie in KP.

A natural question raised by Webster [98, p. 606], and that we now extend to any
value of p € N, is the following.

Find necessary and suffictent conditions on the function g: R, — R to
ensure both the uniqueness (up to an additive constant) and existence
of solutions lying in XY (resp. XP ) to the equation Af =g.

Lemma 2.6(b) shows that a necessary condition for this to occur is that g € Kf:l
(resp. g € KP1). Also, our uniqueness and existence results show that a sufficient
condition is that g € DP NKP (resp. g € DP NKY). It is tempting to believe that
this latter condition is also necessary. The following two examples support this idea.

(a) Both functions
InT(x) and  InT(x)+In(1+ %sin(27x))

are solutions to the equation Af = g that lie in K9, where g(x) = Inx does not
lie in DO UK? (see Example 3.2).

(b) Both functions
2% and 2% + sin(27x)

are solutions to the equation Af = g that lie in X% for any p € N, where
g(x) = 2~ does not lie in DP UXKP.

Nevertheless, the following proposition shows that in general the condition above is
not necessary.

Proposition C.1. There erists a function f € C°©NKY such that

(a) Af does not lie in D° UXK®, and
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(b) for any function @ € K° satisfying A@ = Af we have that f— ¢ 1is constant.

Proof. Let f € X% be the function whose graph is the polygonal line through the
points (4n,4n) and (4n + 2,4n +4) for all n € N. Thus the sequence n — Af(n) is
the 4-periodic sequence 2,0,0,2,2,0,0,2,... and hence condition (a) holds. Now, let
¢ € K° be such that Ap = Af. Clearly, we must have ¢ € X%. For the sake of a
contradiction, suppose that the 1-periodic function w = f — ¢ is not constant. That
is, there exist 0 < x <y < 1 such that w(x) # w(y). There are two exclusive cases
to consider.

(a) Suppose that w(x) < w(y). For large integer n, we then have

0 € oply+4n+2)—px+4n+2) = wkx)—w(y) < 0.

(a) Suppose that w(x) > w(y). For large integer n, we then have

0 € p(x+4n+3)—oey+4n+2) = w(y)—w(x) < 0.

In both cases we reach a contradiction, and hence condition (b) holds. O

We note that the function f arising from Propositon C.1 is such that g = Af does
not lie in D% U K°. The following proposition shows that if the equation Af = g has
a unique solution (up to an additive constant) and if g € XP for some p € N, then
necessarily g € DP N KP (see also Corollary 4.18).

Proposition C.2. Let g: R,y — R and p € N, and suppose that the sequence
n — APg(n) is eventually decreasing. Suppose also that there exists a unique
(up to an additive constant) function f € KV satisfying the equation Af = g.
Then g lies in Df.

Proof. For the sake of a contradiction, suppose that the assumptions are satisfied
and that the sequence n — APg(n) does not approach zero. Since this sequence
is eventually nonnegative (because we eventually have APg = APT1f > 0), it must
converge to a value C > 0. It follows that the function §(x) = g(x) — C(;) lies in
DP NKP and hence £§ lies in K% . Now, for any 0 < T < C/(27)P, the functions

f(x) = Zglx)+ C(‘pj—l)’
e(x) = ZJx)+ C(pil) + Tsin(27x),

lie in X% by Lemma 2.6(d); indeed, we have

Dp+l(C(p:1)+TSin(2ﬂX)) > C—1(2m)P > 0.

Moreover, these functions are solutions to the equation Af = g and satisfy @(1) =
f(1). This contradicts the uniqueness assumption. U
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Remark C.3. We observe that if f and ¢ are solutions to Af = g, then for any x > 0
and any p € N*, we have APf(x) > 0 if and only if AP@(x) > 0. Indeed, suppose on
the contrary that APf(x) > 0 and AP @(x) < 0 for some x > 0. Then

0 < APf(x) = AP 1g(x) = AP@(x) < 0,

a contradiction. O

Thus, Webster’s question still remains a very interesting open problem whose
solution would certainly shed light on the theory developed in this book.

Regarding uniqueness issues only, the following two results (John [49]) are also
worth mentioning. Generalizations of these results to higher convexity properties
would be welcome.

Proposition C.4 (see [49]). Let g: Ry — R have the property that

inf g(x) = 0.

x€ER 4

Then there is at most one (up to an additive constant) solution f to the equation
Af = g that 1s increasing.

Proposition C.5 (see [49]). Let g: Ry — R have the property that

liminfM = 0.
X—00 X

Then there 1s at most one (up to an additive constant) solution f to the equation
Af = g that 1s convez.
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Appendix D

Asymptotic behaviors and
bracketing

Summary: We show that by considering higher and higher values of p in Corollary 6.12
we obtain closer and closer bounds for the generalized Binet function ]PH [(Zg].

We have seen in Example 6.15 that the inequalities

1
1\ 2 I 1
(1+> < (7)()1 < <1+ >
X V2me X x*"2 X

hold for any x > 0 and that tighter inequalities can also be obtained by using different
values of the integer p > 1 in Corollary 6.12. In this appendix we show that and how
this feature applies in general to multiple log I'-type functions.

Let g lie in C° N DP NKP, where p = 1 + degp. By Corollary 6.12, for any x > 0
such that g is p-convex or p-concave on [x,o0) we have the inequalities

N|=

—G, lAPg(x)| < JPMEgl(x) < GplAPg(x)|.

Let us now show how tighter inequalities can be obtained. For any r € N, define
the functions o,[Xg]: R. — R and B,[Zg]: R} — R respectively by the equations

p+r
(Zgl(x) = —Gpur [APTTg(¥)] = Y GjATIg(x),
j=p+1
— p+r .
BrlZglx) = Gpir [APTTg(x)|— D GAg(x),
j=p+1

for x > 0.
We immediately see that the equality

o [Zgl(x) = Br[Zgl(x)
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holds if and only if AP*"g(x) = 0. Moreover, by Corollary 6.12, if g € XP*" and if
x > 0 is so that g is (p + r)-convex or (p + r)-concave on [x, o), then the following
inequalities hold:

% [Zgl(x) < JPEglx) < BrlEglx).

The following proposition shows that these inequalities get tighter and tighter as the
value of r increases.

Proposition D.1. Let g lie in €° N DP N KP+"*1 for some r € N, where p =
1+degg. Let x >0 be so that glx,«) lies in

KPHT([x, 00)) N KP T ([x, 00)).
Then, we have
o [Zgl(x) < arpalZgl(x) < BrialZgl(x) < BrlZgl(x).
These inequalities are strict if APt g(x + 1) #0.

Proof. We already know that the central inequality holds. Now, using Corollary 4.19,
we can assume that g is (p + r)-convex and (p + r + 1)-concave on [x, c0); the other
case can be dealt with similarly. By Lemma 2.5, it follows that AP*"g < 0 and
AP*Tt1g > 0 on [x,00). Let us show that the first inequality holds; the third one can
be established similarly.

We have two exclusive cases to consider.

o If Gpiry1 <0, then

ArolZgl(x) = ~Gpyrer (AP g(x) + AP+ Tg(x))
—Gprr 1 AP Tg(x + 1).

o If Gpyry1 >0, then

Ar o [Zg](x) = —GpirAPTTg(x +1) + Gpiri (AP g(x) —APFTg(x)) .

In both cases, we can see that A, o, [Zg](x) > 0. Moreover, we have A, o, [Zg](x) > 0
if APtTg(x+ 1) #0. O

It is natural to wonder how the inequalities in Proposition D.1 behave as v —y 0.
The following proposition, which is a reformulation of Proposition 8.11, answers this
question and provides a series representation for JP*1[Zg].

Proposition D.2. Let g lie in €°NDP NK*, where p = 1+degg. Let x > 0 be so
that for every integer q > p the function g is q-convex or q-concave on [x,00).
Suppose also that the sequence q — A9g(x) is bounded. Then the following
assertions hold.

(a) The sequence q — Bq[Xgl(x) — aq[Zgl(x) converges to zero.
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(b) The sequence n — G,A™ 1g(x) is summable.
(c) We have

rg(x) = G[QHL g(t)dt— Y G;AIlg(x).
=1

Equiwvalently,
JPEglx) = — ) GAg(x).

j=p+1
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Appendix E

Generalized Webster’s
inequality

Summary: Webster [98] provided bounds for pEH[Zg](a) in the special case when

p = 1. We generalize Webster’s bounds to any integer p € N and use integration to
provide new bounds for JP"1[L£g](x) that are tighter than those given in Theorem 6.11.

As we mentioned in Section 6.4, one can show that if g lies in D'NXK* and if x > 0
and a > 0 are so that g is concave on [x+ a, o), then the following double inequality
holds

La]
Y glx+k+({a—1glx+a)—agx) < pilZglla)
k=0

Lal

< ) glx+k) —g(x+a)+{agx+lal+1)—ag(x).
k=0

This result was proved in the multiplicative notation by Webster [98, Eq. (6.4)] to
establish the limit (6.4) in the case when p = 1. In the following proposition, we
generalize this inequality to any value of p € N. We call it the generalized Webster
nequality.

Proposition E.1 (Generalized Webster’s inequality). Let f: R, — R and g: R, —
R be functions such that Af =g on Ry. Let also x >0 and a > 0. The following
assertions hold.

(a) If f is monotone on [x + a,00), then

La]
0 < i(pi[f](a)+g(x+a)—Zg(x+k)) < £ gx+|a]+1),
k=0

where + stands for 1 or —1 according to whether f lies in K9 or K°.
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(b) If f 1s p-convex or p-concave on [x + a,00) for some p € N*, then

0 < +epallal ot i)
< Eepuallal o8, s lolla} - 1),

where ep1({a}) =0, f a € N, and ep1({a}) = (—1)P, otherwise, and +
stands for 1 or —1 according to whether f lies in XY or XY . Moreover, we
have

o2l e = pP*HIfI(a) + g(x + a)

P La]

P
+Z( — () A g - Y () ZAJ glx + k).

j=0
Proof. Let us first prove assertion (a). Using monotonicity of f, we get
+fx+|a]+1) € £ flx+a+1) < =+ flx+[a] +2),

or equivalently, using (3.2),

La)
j:(f(x) + Z glx + k)) < E£(f(x+a)+g(x+a))

This proves assertion (a). Let us now prove assertion (b). The first inequality im-
mediately follows from Lemma 2.7. To see that the second inequality holds, we first
observe that

{aP L flx+ [a] +1,...,x+ [a] +p,x+ a,x +a+1]
= ({a}—p){aBflx+|a]+1,...,x+ |a] +p,x+a+1]
—{a}({a}— 1)Ef[x+ la]+1,...,x+ [a] +p,x+d] (by (2.3))
= ({a}=p)e}, o [fI{a)) —{a}pl, o)1 [1{a} —1) (by (2.12))
= {a} pX;LaJH[ I{a}=1) =p e}, o) fl{a}) (by (4.3))
= {0l o) 1lola} = 1) —p('§) APF(x + [a) + 1)
—PPY, | fl{a))  (by (1.7))

= {a}pl, o aloia) = 1) —pelll, @) (by (17)

Now, since f is p-convex or p-concave on [x + a, c0), we have

0 < =+ gprrl{a{aLfx+ [a] +1,...,x+ |a] +p,x+ a,x + a+ 1],
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and hence
0 <t epuallal) (15 08, gy lglia) — 1) = o2 (D).

This proves the second inequality. Finally, using (1.7) and then (3.2) we obtain

o2 1l ({a}) — o2 2 if](a)
P P
= flx+a+1) =) ()Aflx+la]+1)—fx+a)+ ) (5)Af(x
j=0 j=0

La)

g(x+a) +i( “”)Alf i ta) ZAJ (x + k).
j=0 k=0

j=1

This completes the proof. O

The generalized Webster inequality applies to multiple log I'-type functions simply
by taking f = Xg in Proposition E.1, provided that g lies in DP NKP for some p € N.
This inequality then provides bounds for the quantity p?**[Zgl(a).

We now show how narrow bounds for JP*1[Zg](x) can be derived by “integrating”
the generalized Webster inequality. We also show that these new bounds are narrower
than the generalized Stirling’s formula-based inequalities given in Theorem 6.11 and
Corollary 6.12.

Let us begin with the special case when p = 0. Thus, let g lie in C°ND°NK° and
let x > 0 be so that g is monotone on [x, 00). Corollary 6.12 provides the following
bounds for J1[Zg](x)

=gkl < JHEGIx) < lg(x)l-

The following proposition provides a finer approximation of J'[Zg](x), where the
absolute error is bounded at x by [g(x + 1)|.

Proposition E.2. Let g lie in C°ND°NXK° and let x > 0 be so that g is monotone
n [x,00). Then we have

1
0 < :t(g(x)J g(x+t)dt) < + (D) JHZgl(x)
0
1
< i(g(xwg(wnf g(x+t)dt) < +gl),
0

where + stands for 1 or —1 according to whether Xg lies in 3{3 or X°.

Proof. Negating g is necessary, we can assume that it lies in K9 , which means that
g lies in 9{‘1. This immediately establishes the first and the last inequalities. The
two inner inequalities can then be obtained by integrating the expressions in assertion
(a) of Proposition E.1 on a € (0,1). O
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Example E.3. Let us apply Proposition E.2 to g(x) = % For any x > 0, we have

the following inequalities

1 1 1
Inx—= < In(x+1)—=—
X x x+4+1

1
< P(x) < ln(x—l—l)—; < Inx.

The inner approximation has an absolute error that is bounded at any x > 0 by the
quantity 5. O

Let us now assume that p > 1. Thus, let g lie in C° N DP N KP for some p € N*
and let x > 0 be so that g is p-convex or p-concave on [x,c0). Then we have seen in

Theorem 6.11 that the following inequalities hold
0 < £ (=1PJPMEG(x) < +(=1)P" BP[gl(x),

where + stands for 1 or —1 according to whether g lies in X% or in X?, and

1
Blgl) = | (1) (a7 tglx+t) - a7 gl dt
0

= Ll (D) AP g(x + 1) dt — (—1)P G, AP Hg(x).

In the following proposition, we give finer bounds for JP™1[Zg](x). To this end,
we introduce the quantity

1

APgl(x) = JP“[ngHlj to?,,lgl(t — 1) dt.
P Jo

It is not difficult to see that this quantity can be rewritten as follows
1 1 & :
AP[gl(x) = JPTgl(x) + I;J tg(x+t)dt— = ZjGj N7 g(x +1).
0 £
j=1

Indeed, using (1.7) we clearly have

1 1 p—1 .1
J tpY qlgl(t—1)dt = J tg(x—i—t)dt—ZJ t(t]‘?) dt Alg(x + 1)
0 0 j—0 J0

where

1 1
J t(5Y) dt = (j+1)J () dt = (+1) Gy
0 0

We also observe that Al[g] = B![g].

Proposition E.4. Let g lie in €° N DP NKP for some p € N* and let x > 0 be so
that g s p-convez or p-concave on [x,00). Then, we have

0 < =+ (=1)PH P [g](x) +(—1)PJPHHEgl(x)

<
< H(-1)PTTAP[GI(x) < £ (—1)PT1BPg](x),

where + stands for 1 or —1 according to whether g lies in X% or in KV .
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Proof. Recall that if g lies in KV (resp. X" ), then £g lies in KP (resp. X% ). The first
inequality is then clear. The second and third inequalities are obtained by integrating
the expressions in assertion (b) of Proposition E.1 on a € (0,1). To establish the
fourth inequality, we first prove the following claim.

Clavm. For any g € R, — R, any p € N*, any x > 0, and any 0 < t < 1, we have

(1) (AP Tg(x + 1) — AP g(x)) + pP Mgl (t) — % oP, 1 lgl(t —1)

1
= 1;t&Zg[x+j,...,x+p—1,x+t,...,x+t+j].
j=1

P —j places j + 1 places

Proof of the claim. Using (1.7), it is easy to see that the claimed identity holds when
p = 1, in which case the right-hand side is identically zero. Hence, we can assume
that p > 2. Using (2.3), we then obtain

—1
1 P
Bt&Zg[x+j,...,><+p—1,x+t,...,x+t+j]
j=1

p+1 P1

(gx+j+1,...,x+p—1Lx+t,...,x +t+]

1t
p t i1
—g[x+j,...,x+p—1,x+t,...,x+t—|—j—1]),

where the latter sum telescopes to
gx+t,...,x+t+p—1—gx+1,...,x+p—1,x+ tl.

Thus, using (2.12) we see that the right-hand side of the claimed identity reduces to

_ _ t—p
() AP gl 1) = — oy Hlgl(t—1)
Now, subtracting the left-hand side of the claimed identity from this latter expression,
we get

Pt el gl = 1)+ - ollal(t— 1) — o Hlalle) + (1) A7 g ().

Using identities (1.7), (3.5), and the trivial identity %(;:11) = (;), it follows that the
latter expression becomes

[ V)

P P—
—(}) AP tg(x+ 1) +Z JNgx) =Y (5 Aglx+ 1)+ (Y1) AP Hg(x).
j= j=0
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Substituting g(x) + Ag(x) for g(x + 1) in this latter expression, we obtain

P—2
—(() A g0 + () APg(x))+ | (£) APg(x) + (,4,) A7 P9l + Y ()N glx)

j=0

p—2 p—2
o (t;l)A]g(X) + Z (t;l)AjJrlg(X) + (t;l) Apflg(x).
j =0

I
o

Collecting terms, this latter expression reduces to

P—2 p—1
(") A" 900 — (71 AP gt + 3 ((5) — (59) Algx) = Y (1) Alg(x)
j=1 j=1
p—2 p—1
= (1) AP g+ ) (D) Ag) - ) ((Th)agk) = o
j=1 j=1
This completes the proof of the claim O

Let us now establish the fourth inequality. Negating g if necessary, we can assume
that it lies in K”. Using the claim, we have immediately that

Pllypel
BP[gl(x) — AP[gl(x) = ZJ gx+j,...,x+p—1,x+t,...,x+t+jldt,
j=1 70

where the divided difference of g has p + 1 arguments and is therefore nonnegative
since g is (p — 1)-convex by Corollary 4.19. This completes the proof. O

Example E.5 (The gamma function). Let us apply Proposition E.4 to the function
g(x) = Inx with p = 1 (recall here that Al[g] = Bl[g]). We obtain the following
inequalities for x > 0

0 < ;(2x+1)1n<1+i>—1 < Jix) < 1(x+1)21n<1—|—i>—x—3.

2

This provides an approximation of Binet’s function J(x) with an absolute error that
is bounded at any x > 0 by
2
X 1 x 1
T mfl1az) Xz
2 ( * x) 23

that is, 6x — & + O(x73) as x — o0o. In the multiplicative notation, we obtain

1 1 2
1\ "2 I(x) . 3 1) 2

1 <e {142 < — "~ L e zTa (14>
-t ( +x> S Vamenwed 507 UM !

thus retrieving (6.28). In turn, these inequalities provide an approximation of the
log-gamma function with the same absolute error. O
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Example E.6 (The Barnes G-function, see Section 10.5). Let us apply Proposi-
tion E.4 to the function g(x) =1nT(x) with p = 2. After some calculus we obtain the
following inequalities for x > 0

1 1 1 1
< — — — JR — ) — =
0 < InT(x)+x (x 2) Inx 5 In (1 + x) 5 In(27)

1 1 1 1
< = - — — R —
< InG(x) +P_2(x) 5 InT(x) + 1 Inx + 52 In(27t) —2In A

1 3 1
—E(3x2+6x—4)1nx+gx2+§x

1 1

< Pl Ik

1 1 1
< = (x+1D2(2x+5)In |1+ =) — = (12x% +48x +49).
12 X 72

Here, the absolute error is bounded by ﬁ — % +0O(x73) as x = oo. O

Remark E.7 (Bounds for the generalized Euler constant). If g lies in C° N DP N KP
for p =1+ degg and if g is p-convex or p-concave on [1,c0), then (6.45) and (6.46)
provide bounds for the generalized Euler constant (see Definition 6.34)

vlgl = —JPTEgl(1).

Finer bounds can now be obtained as follows. Under the assumptions of Proposi-
tion E.4, we have

+(—1)PJP T gI(1) < £ (1) ylgl < £ (—1)PAP[g](1).

For instance, when g(x) =1nT(x), we obtain

7 1 1 3
1——In2—-Ilnm < y[nol] = oflnol] < -—=-InA — = 1n(2n).
12 2 8 2 8

EN

Thus, y[Inol'] &~ 0.045 lies in the interval [0.023,0.062], with amplitude < 0.039. ¢

Searching for finer approximations. We now end this appendix with an inter-
esting observation about the approximations of JP™1[Zg](x) (or equivalently Zg(x))
given in Propositions E.2 and E.4.

For any p € N and any g € €% N DP N KP, define the function £P[g]: R, — R by
the equation

Plal(x) = lg(x + 1)1, if p=0,
? APIgI(x) — P glx)l, i p > 1.

Let us show that, if g is p-convex or p-concave on [x,c0), then the function &P [g]
decreases to zero on [x, 00). This is clear if p = 0, so we can assume that p > 1. We
know from Theorem 6.11 that the function [BP[g]| vanishes at infinity, and hence so
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does the function ¢P[g] by Proposition E.4. On the other hand, using (2.12) we see
that

eP[gl(x)

1y )
L olalglit—1) dt‘

b)

1gptt
J glx+1,...,x+p,x+tdt
o P

and this function is monotone by Lemma 2.5.

In terms of approximations of Xg(x) given in Propositions E.2 and E.4, this ob-
servation shows that, for any m € N, the approximation of £g(x + m) is finer than
that of £g(x) and it is actually finer and finer as m increases.

Thus, finer approximations of Xg(x) can be obtained using the following proce-
dure.

Step 1. Replace x with x + m in Propositions E.2 and E.4.
Step 2. Use the substitution (cf. (5.3))

Zg(x+m) = Xg(x)+ Z g(x +k)

in the expression of JP™1[Zg](x + m).

Note that we already used this trick when we investigated the generalized Gautschi
inequality (see Remark 8.69).

Example E.8 (The gamma function). Let m € N. Replacing x with x + m in the
following approximation of the gamma function (see Example E.5)

1 1 2
1 xX+3 r . 1 5 (x+1)

e ! (1 + ) < ¢ < e 27 <1 + > .
X X

Vome—xxX"3
Nx+m) = (x+m—1)"T(x)

IS

and then using the substitution

we finally obtain

e (14 1\ o (x +m—1)7mT(x)
x+m Vome M (x 4 m)xtm—3

x+m 3 1 %(X+m+l]2
< e (e ) .
X+m

This double inequality provides an approximations of the log-gamma function with

an absolute error that is bounded by 6(Xim) — S[ij)z +0(x72) as x — 0. O




Appendix F

On the differentiability of 2g

Summary: We establish Proposition 7.3, which states that, for every p € N, there
exists a function g lying in €1 N DP N KP for which £g does not lie in CP*1.

To establish Proposition 7.3, we first show that it is enough to consider the special
case when p = 0. Suppose that there exists a function g: R, — R lying in €t ND°NKP°
such that £g does not lie in @'. By Proposition 4.12, its antiderivative

G(x) = ng(t) dt

1

clearly lies in €2 N D! N K!. By Proposition 8.20, we also have
DIG(x) = Xg(x)— olgl, x > 0.

Since we assumed that ¥g does not lie in @1, it follows that £G cannot lie in C2.
Iterating this process, we obtain that the statement is true for any p € N.

We now construct a function g lying in €' N D° N K° (and even in €*) and such
that the function £g does not lie in C*.

Consider first the function ¥: R — R defined by

Yix) = {oc exp (1— 5=), ifxe (.7%, 1y,
0, otherwise,

where

1 J'l/2 (1 1 )d
- = €X —_ .
—1/2 P 1—4)(2 x

Thus defined, V¥ is a bump function that is of class €™ with the compact support
supp(¥) = [—5» 5}-
For every m € N*, define the function ¥,,: R — R by the equation

Y.x) = ¥Y(2™(x—m)) forxeR.

259
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We clearly have that
supp(Ym) = [m—gm%,m"‘ gm%}, (F.1)
1
JR Y.(x)dx = om and ¥Y,(m) = «.
N

Now, define the functions ¥: R, — R and g: R, — R by
Ux) = ) Wnlx).
m=1

and

X
gx) = —1+J Y(t) dt.
0
Then, we can easily see that the function g lies in €*° N D° N JC&, and hence the
function ¥g exists and lies in €° N D! N KO

We now have the following claim, which establishes Proposition 7.3.

Claim. For any m € N*, the function Zg is not differentiable at m. More precisely,

we have
. Xg(m+h)—EXg(m)
lim = —00.
h—0 h

Proof. Since g lies in C* and satisfies the equation Xg(x + 1) = Xg(x) + g(x), it is
enough to prove the claim for m = 1. For any h > 0, we have

1 1 1 &
E(Zg(lJrh)—Zg(l)) = EZQ(H-h) = —ﬂk:1(9(k+h)—9(k))
= —Zg[k,k+h].

k=1

Now, for any k € N* the function g is increasing and concave on [k, k + %) (because
its derivative g'[j 141y = Wilpir 1) is nonnegative and decreasing). We then see
that the function

h — glk,k+h]

is nonnegative and continuously decreases (by Lemma 2.5) on [0, %) with maximum

value glk, k] = g’(k) = Wi (k) = «. It follows that, for any integers 1 < k < m, there
exists 0 < d,m < % such that

B[R

< glk,k+h < « for all h € (0, ok, m).
Thus, for any m € N*, there exists

0 < hm <  min dym,
k=1,...,m
such that

% <glkkthml < o k=1,...,m.
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Thus, we have

’

1 o0 m
L9l thy) = — > glk,k+hml < Z kk+hm < —m
m k=1 k=1

DR

which shows that the function Xg cannot be right-differentiable at 1.
Now, since the function

1
Zyq(1 = —
h — ; g(1+h) kElg[k,lw—h]

is increasing on [0, %), we can easily see that
1
lim —Xg(l14+h) = —o0.
hlﬁ)1+ h 9(1+h o
Similarly, we obtain the same limit when h — 0. O

Thus, we have shown that Xg is a continuous and decreasing function that is not
differentiable at each positive integer. Let us now establish the interesting fact that
Ygis of class C* on R4 \ N.

Claim. The function Xg is of class C* on R} \ N.

Proof. Since g lies in C* and satisfies the equation Xg(x + 1) = Xg(x) + g(x), it is
enough to show that Xg is of class C* on (0, 1), or equivalently, on every compact
interval [a,b], with0 < a<b < 1.

By the existence Theorem 3.6, the sequence n — f% [g], with

n—1 n—1
= Y gk =) glx+¥k),
k=1 k=0

converges uniformly to £g on [a, b]. Let us now show that the sequence n — Df2 [g],
with

Df%[gl(x) = —Z‘Px—i—k

converges uniformly on [a,b]. In view of 1dent1ty (F.1), it is then clear that there
exists kg € N* for which

supp(Wix) N [a+k,b+kl N supp(Wxy1) = @ for every k > kq.

Thus, for any integer k > ko and any x € [a, b], we have ¥(x + k) = 0. Therefore, we

have
ko—1

Df2[gl(x) = —Z‘{’x—i—k x € [a,b], n > k.

It follows that the sequence n — Dfn[g]|[a,b] is eventually constant and hence uni-
formly convergent on [a,b]. Using the classical result on uniform convergence and
differentiation, we obtain that g is of class C! on [a,b]. An immediate adaptation
of this proof shows that Xg is of class C* on [a, b]. O
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Analogues of properties of the
gamma function

Analogue of Bohr-Mollerup’s theorem. Theorems 1.5 and 3.1
Analogue of Burnside’s formula. Section 6.5

Analogue of Euler’s infinite product (Eulerian form). Section 8.1
Analogue of Euler’s reflection formula. Section 8.9

Analogue of Euler’s series representation of y. Equation (7.4)
Analogue of Fontana-Mascheroni’s series. Section 8.4

Analogue of Gauss’ digamma theorem. Section 8.10

Analogue of Gauss’ limit. Theorems 1.5 and 3.1

Analogue of Gauss’ multiplication formula. Section 8.6
Analogue of Gautschi’s inequality. Section 8.11

Analogue of Legendre’s duplication formula. Section 8.6
Analogue of Raabe’s formula. Section 8.5

Analogue of Wallis’s product formula. Section 8.8

Analogue of Weierstrass’ infinite product (Weierstrassian form). Section 8.2

Generalized Binet’s function. Section 6.3

Generalized Euler’s constant. Section 6.8

Generalized Liu’s formula. Section 8.7

Generalized Stirling’s constant. Definition 6.17
Generalized Stirling’s formula. Sections 6.4 and 8.7
Generalized Webster’s functional equation. Section 8.12
Generalized Webster’s inequality. Appendix E
Generalized Wendel’s inequality. Section 6.1
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I'-type function, 3

Ip-type function, 4, 43

log I';-type function, 4, 43
p-concavity, 2, 13, 60, 137
p-convexity, 2, 13, 60, 137
g-gamma function, 177-183

asymptotic constant, 52, 52-53, 57, 61,
73, 102, 105, 108, 115, 118, 140,
141

asymptotic degree, 37, 42, 139

asymptotic expansion, 112-118, 145

Barnes’s G-function, 4, 25, 62, 122, 138,
183-101, 214, 227, 257
Bernoulli numbers, 6, 70, 114
Bernoulli polynomials, 70, 117, 138, 230
of the second kind, 222, 231
Binet’s function, 54, 55, 68, 101, 114, 256
generalized, 54, 54-55, 59, 65, 74, 82,
142, 247
Bohr-Mollerup theorem, 1, 18, 19, 25, 93,
152
analogue, 140
Burnside’s formula, 61
analogue, 61-62, 145

Catalan number function, 211-212

digamma function, 5, 8, 24, 84, 118, 122,
125, 127, 159-164, 169, 173
Dirichlet representation, 159
Gauss representation, 159
Gauss’ digamma theorem, 129
analogue, 129-130
principal indefinite sum, 213-218

Dirichlet test for convergence of improper
integrals, 116

Dirichlet’s eta function, 174, 198, 205,
211

divided difference, 11-12, 14, 256

elevator method, 87, 88, 90, 127, 148,
157, 175, 188, 190
Euler polynomials, 231
Euler’s constant, 5, 9, 29, 61, 72-74, 102,
105, 120, 163
generalized, 72, 71-75, 142, 217, 257
in terms of the asymptotic constant,
73, 142
integral form, 74, 142
Euler’s reflection formula, 121
analogue, 121-129
Euler’s series representation of vy, 86
analogue, 86, 150
Euler-Maclaurin summation formula, 70
Eulerian form, 96, 95-97, 146, 147
of the gamma function, 96
existence theorem, 3, 20
alternative form, 22
when g(n) is summable, 23
exponential integral, 229

Fontana-Mascheroni’s series, 102, 163
analogue, 102-104, 148

gamma function, 151-158

Gauss error function, 228

Gauss’ limit, 4
analogue, 4, 95, 147

Gauss’ multiplication formula, 107
analogue, 108, 107-111, 148
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Gautschi’s inequality, 131 of the generating function for the Gre-

generalized, 131-133, 144 gory coefficients, 221-225
Glaisher-Kinkelin’s constant, 5, 86, 92 of the Hurwitz zeta function, 218-
Gregory coefficients, 6, 54, 114, 221 221

Gregory’s summation formula, 65
as a quadrature formula, 66, 68
general form, 69
geometric interpretation, 67

Raabe’s formula, 53, 104
analogue, 104, 104-107, 141
regularized incomplete gamma function,

228
harmonic number function, 9, 120, 159~ Riemann zeta function, 6, 81, 192
164
of order 2, 120 Stieltjes constants, 199
of order n, 222 generalized Stieltjes constants, 42, 199—
higher order convexity and concavity, 13— 206
14, 237-240 Stirling’s constant, 60
Hurwitz zeta function, 5, 80, 191-199 generalized, 60, 129, 141
higher order derivatives, 206-211 Stirling’s formula, 49
principal indefinite sum, 218-221 generalized, 57, 55-61, 72, 105, 145
Hurwitz-Lerch transcendent, 230 a variant, 115
hyperfactorial function, 138, 229 improvements, 59

Stolz-Cesaro theorem, 46
interpolating polynomial, 11, 15, 27, 35,
67, 143 trigamma function, 24

interpolation error, 12, 15 .
uniqueness theorem, 3, 18

Jacobi theta function, 139 alternative forms, 22, 93

when g(n) is summable, 23
Legendre’s duplication formula, 107, 127

Liu’s formula, 115 Wallis’s product formula, 119
generalized, 116, 146 analogue, 119, 119-121, 149

logarithmic integral function, 221 Webster’s functional equation, 133

generalized, 133-135

multiple I'-type function, 4, 43 Webster’s inequality, 60, 251

multiple log I'-type function, 4, 43, 43, generalized, 251-258
. 138. Weierstrassian form, 97, 98, 97-100, 146,
integration, 44-45 147

multiple gamma function, 42, 227 of the gamma function, 97

Wendel’s inequality, 50
generalized, 50, 49-52, 143

polygamma functions, 8, 25, 87, 92, 165— discrete version, 52
176
polylogarithm function, 130, 178, 206
principal indefinite sum, 38, 138
of the digamma function, 213-218
of the generalized Binet function, 74

Newton interpolation formula, 11, 15



