Article (Périodiques scientifiques)
Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics
Tanevski, Jovan; Nguyen, Thin; Truong, Buu et al.
2020In Life Science Alliance, 3 (11), p. 202000867
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
lsa_prediction_paper_drosophila_1169_2_merged_1598373937.pdf
Postprint Auteur (37.89 MB)
Demander un accès

The hyperlink to the original publication will be provided here once available.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
transcriptomics; single-cell; prediction; cell position; 3D; gene selection; Drosophila; scRNAseq; challenge
Résumé :
[en] Single-cell RNA-seq (scRNAseq) technologies are rapidly evolving. While very informative, in standard scRNAseq experiments the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the Top-10 methods to a zebrafish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Biotechnologie
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Tanevski, Jovan
Nguyen, Thin
Truong, Buu
Karaiskos, Nikolaos
Eren, Mehmet
Zhang, Xinyu
Shu, Chang
Hu, Ying
Pham, Hoang V. V.
Li, Xiaomei
Le, Thuc
Tarca, Adi
Bhatti, Gaurav
Romero, Roberto
Karathanasis, Nestoras
Loher, Phillipe
Chen, Yang
Ouyang, Zhengqing
Mao, Disheng
Zhang, Yuping
Zand, Maryam
Ruan, Jianhua
Hafemeister, Christoph
Qiu, Peng
Tran, Duc
Nguyen, Tin
Gabor, Attila
Yu, Thomas
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
KRAUSE, Roland  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
BANDA, Peter ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Stolovitzky, Gustavo
Rajewsky, Nikolaus
Saez-Rodriguez, Julio
Plus d'auteurs (24 en +) Voir moins
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics
Date de publication/diffusion :
2020
Titre du périodique :
Life Science Alliance
eISSN :
2575-1077
Maison d'édition :
Life Science Alliance (LLC), Woodbury, Etats-Unis
Volume/Tome :
3
Fascicule/Saison :
11
Pagination :
e202000867
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Commentaire :
in press
Disponible sur ORBilu :
depuis le 01 septembre 2020

Statistiques


Nombre de vues
283 (dont 7 Unilu)
Nombre de téléchargements
2 (dont 1 Unilu)

citations Scopus®
 
16
citations Scopus®
sans auto-citations
6
citations OpenAlex
 
24
citations WoS
 
13

Bibliographie


Publications similaires



Contacter ORBilu