Article (Périodiques scientifiques)
Digital twinning of Cellular Capsule Technology: emerging outcomes from the perspective of porous media mechanics
URCUN, Stéphane
2021In PLoS ONE
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
journal.pone.0254512.pdf
Postprint Éditeur (2.18 MB)
Télécharger
Annexes
Data.zip
(177.05 kB)
Supplementary data
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Multicellular spheroid; Computational biomechanics; Multiphase poromechanics
Résumé :
[en] Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation of the capsule. Here we focus on the particular case of Cellular Capsule Technology (CCT). We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumor cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play. Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design. We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumour cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play.Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design.
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
URCUN, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Digital twinning of Cellular Capsule Technology: emerging outcomes from the perspective of porous media mechanics
Date de publication/diffusion :
12 juillet 2021
Titre du périodique :
PLoS ONE
eISSN :
1932-6203
Maison d'édition :
Public Library of Science, San Franscisco, Etats-Unis - Californie
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Organisme subsidiant :
ENSAM réseau santé, Université du Luxembourg, DRIVEN H2020 TWINNING
Disponible sur ORBilu :
depuis le 27 août 2020

Statistiques


Nombre de vues
269 (dont 10 Unilu)
Nombre de téléchargements
99 (dont 2 Unilu)

citations Scopus®
 
22
citations Scopus®
sans auto-citations
8
OpenCitations
 
6
citations OpenAlex
 
21
citations WoS
 
18

Bibliographie


Publications similaires



Contacter ORBilu