Article (Périodiques scientifiques)
Deep Learning to Predict the Feasibility of Priority-Based Ethernet Network Configurations
MAI, Tieu Long; NAVET, Nicolas
2021In ACM Transactions on Cyber-Physical Systems, 5 (4), p. 1–26
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Graph_neural_network_Accepted.pdf
Preprint Auteur (2.84 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Machine learning; Graph Neural Network; Design Space Exploration; Time-Sensitive Networking; Schedulability analysis; In-vehicle networks
Résumé :
[en] Machine learning has been recently applied in real-time systems to predict whether Ethernet network configurations are feasible in terms of meeting deadline constraints without executing conventional schedulability analysis. However, the existing prediction techniques require domain expertise to choose the relevant input features and do not perform consistently when topologies or traffic patterns differ significantly from the ones in the training data. To overcome these problems, we propose a Graph Neural Network (GNN) prediction model that synthesizes relevant features directly from the raw data. This deep learning model possesses the ability to exploit relations among flows, links, and queues in switched Ethernet networks, and generalizes to unseen topologies and traffic patterns. We also explore the use of ensembles of GNNs and show that it enhances the robustness of the predictions. An evaluation on heterogeneous testing sets comprising realistic automotive networks, shows that ensembles of 32 GNN models features a prediction accuracy ranging from 79.3% to 90% for Ethernet networks using priorities as the Quality-of-Service mechanism. The use of ensemble models provides a speedup factor ranging from 77 to 1715 compared to schedulability analysis, which allows a far more extensive design space exploration.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAI, Tieu Long ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
NAVET, Nicolas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Deep Learning to Predict the Feasibility of Priority-Based Ethernet Network Configurations
Date de publication/diffusion :
octobre 2021
Titre du périodique :
ACM Transactions on Cyber-Physical Systems
ISSN :
2378-962X
eISSN :
2378-9638
Maison d'édition :
Association for Computing Machinery, New York, Etats-Unis
Titre particulier du numéro :
Special Issue on Artificial Intelligence and Cyber-Physical Systems
Volume/Tome :
5
Fascicule/Saison :
4
Pagination :
1–26
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 18 août 2020

Statistiques


Nombre de vues
477 (dont 46 Unilu)
Nombre de téléchargements
1123 (dont 76 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
8
OpenCitations
 
2
citations OpenAlex
 
14
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu