Article (Périodiques scientifiques)
The benefits of a Bayesian analysis for the characterization of magnetic nanoparticles
BERSWEILER, Mathias; Rubio, Helena Gavilan; HONECKER, Dirk et al.
2020In Nanotechnology, 31 (43), p. 435704
Peer reviewed
 

Documents


Texte intégral
Bersweiler_2020_Nanotechnology_Bayesian.pdf
Postprint Éditeur (2.43 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Magnetic nanoparticles; Neutron Scattering; Bayesian analysis
Résumé :
[en] Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required. For a thorough characterization, the combination of conventional magnetometry and advanced scattering techniques has shown great potential. In the present work, we characterize a powder sample of high-quality iron oxide nanoparticles that are surrounded with a homogeneous thick silica shell by DC magnetometry and magnetic small-angle neutron scattering (SANS). To retrieve the particle parameters such as their size distribution and saturation magnetization from the data, we apply standard model fits of individual data sets as well as global fits of multiple curves, including a combination of the magnetometry and SANS measurements. We show that by combining a standard least-squares fit with a subsequent Bayesian approach for the data refinement, the probability distributions of the model parameters and their cross correlations can be readily extracted, which enables a direct visual feedback regarding the quality of the fit. This prevents an overfitting of data in case of highly correlated parameters and renders the Bayesian method as an ideal component for a standardized data analysis of magnetic nanoparticle samples.
Disciplines :
Physique
Auteur, co-auteur :
BERSWEILER, Mathias ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Rubio, Helena Gavilan
HONECKER, Dirk ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
MICHELS, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
BENDER, Philipp Florian ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The benefits of a Bayesian analysis for the characterization of magnetic nanoparticles
Date de publication/diffusion :
2020
Titre du périodique :
Nanotechnology
Maison d'édition :
IOP Publishing
Volume/Tome :
31
Fascicule/Saison :
43
Pagination :
435704
Peer reviewed :
Peer reviewed
Focus Area :
Physics and Materials Science
Disponible sur ORBilu :
depuis le 10 août 2020

Statistiques


Nombre de vues
208 (dont 9 Unilu)
Nombre de téléchargements
3 (dont 3 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
2
OpenCitations
 
3
citations OpenAlex
 
4
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu