Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application
AMROUCHE, Faouzi; LAGRAA, Sofiane; FRANK, Raphaël et al.
2020In 91st IEEE Vehicular Technology Conference, VTC Spring 2020, Antwerp, Belgium, May 25-28, 2020
Peer reviewed
 

Documents


Texte intégral
285-45973.pdf
Postprint Éditeur (408.5 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
intrusion detection; ros; self-driving; autoencoders
Résumé :
[en] Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
AMROUCHE, Faouzi ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
LAGRAA, Sofiane ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
FRANK, Raphaël ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application
Date de publication/diffusion :
2020
Nom de la manifestation :
IEEE 91st Vehicular Technology Conference: VTC2020-Spring
Date de la manifestation :
25 May to 31 July 2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
91st IEEE Vehicular Technology Conference, VTC Spring 2020, Antwerp, Belgium, May 25-28, 2020
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 30 juillet 2020

Statistiques


Nombre de vues
345 (dont 31 Unilu)
Nombre de téléchargements
358 (dont 21 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
4

Bibliographie


Publications similaires



Contacter ORBilu