[en] We define an ideal functionality $\Functionality_{\UD}$ and a construction $\mathrm{\Pi_{\UD}}$ for an updatable database ($\UD$). $\UD$ is a two-party protocol between an updater and a reader. The updater sets the database and updates it at any time throughout the protocol execution. The reader computes zero-knowledge (ZK) proofs of knowledge of database entries. These proofs prove that a value is stored at a certain position in the database, without revealing the position or the value.
(Non-)updatable databases are implicitly used as building block in priced oblivious transfer, privacy-preserving billing and other privacy-preserving protocols. Typically, in those protocols the updater signs each database entry, and the reader proves knowledge of a signature on a database entry. Updating the database requires a revocation mechanism to revoke signatures on outdated database entries.
Our construction $\mathrm{\Pi_{\UD}}$ uses a non-hiding vector commitment (NHVC) scheme. The updater maps the database to a vector and commits to the database. This commitment can be updated efficiently at any time without needing a revocation mechanism. ZK proofs for reading a database entry have communication and amortized computation cost independent of the database size. Therefore, $\mathrm{\Pi_{\UD}}$ is suitable for large databases. We implement $\mathrm{\Pi_{\UD}}$ and our timings show that it is practical.
In existing privacy-preserving protocols, a ZK proof of a database entry is intertwined with other tasks, e.g., proving further statements about the value read from the database or the position where it is stored. $\Functionality_{\UD}$ allows us to improve modularity in protocol design by separating those tasks. We show how to use $\Functionality_{\UD}$ as building block of a hybrid protocol along with other functionalities.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Applied Security and Information Assurance Group (APSIA)
Abe, M., Camenisch, J., Dubovitskaya, M., Nishimaki, R.: Universally composable adaptive oblivious transfer (with access control) from standard assumptions. In: Proceedings of the 2013 ACM Workshop on Digital Identity Management, DIM 2013, pp. 1–12 (2013)
Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10. 1007/978-3-642-22792-9 37
Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2011). https://doi.org/10.1007/3-540-44987-6 8
Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3(2), 111–128 (2013)
Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for DDH groups and their application to attribute-based anonymous credential systems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 20
Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48285-7 24
Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to iops and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 20
Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: Proceedings of the 2009 ACM Conference on Computer and Communications Security, CCS 2009, pp. 131–140 (2009)
Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer with rechargeable wallets. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 66–81. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 8
Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular protocol design and applications to revocation and attribute tokens. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 208–239. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 8
Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi. org/10.1007/978-3-642-00468-1 27
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 5
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS 2001 (ePrint 2000/067 version 14-Dec-2005). pp. 136–145 (2001)
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 5
Coull, S.E., Green, M., Hohenberger, S.: Controlling access to an oblivious database using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009). https://doi.org/10. 1007/978-3-642-00468-1 28
Damodaran, A., Rial, A.: UC updatable databases and applications. http://hdl. handle.net/10993/42984
Danezis, G., Kohlweiss, M., Livshits, B., Rial, A.: Private client-side profiling with random forests and hidden Markov models. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 18–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7 2
Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10. 1007/978-3-319-16715-2 7
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPS. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37
Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.: Zero-knowledge accumulators and set algebra. In: Cheon, J., Takagi, T. (eds.) ASI-ACRYPT 2016. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 3
Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 8
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8 26
Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering billing. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 192– 210. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4 11
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 11
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: ACM STOC 1992, pp. 723–732 (1992)
Kohlweiss, M., Rial, A.: Optimally private access control. In: WPES 2013, pp. 37–48 (2013)
Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 19
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Adaptive oblivious transfer with access control from lattice assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 533–563. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 19
Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571– 589. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 34
Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP 2016, pp. 30:1–30:14 (2016)
Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 30