
UC Updatable Databases and Applications?

Aditya Damodaran[0000−0003−4030−6859] and Alfredo Rial[0000−0003−1107−4841]

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
firstname.lastname@uni.lu

Abstract. We define an ideal functionality FUD and a construction ΠUD

for an updatable database (UD). UD is a two-party protocol between an
updater and a reader. The updater sets the database and updates it at
any time throughout the protocol execution. The reader computes zero-
knowledge (ZK) proofs of knowledge of database entries. These proofs
prove that a value is stored at a certain position in the database, without
revealing the position or the value.
(Non-)updatable databases are implicitly used as building block in priced
oblivious transfer, privacy-preserving billing and other privacy-preserving
protocols. Typically, in those protocols the updater signs each database
entry, and the reader proves knowledge of a signature on a database
entry. Updating the database requires a revocation mechanism to revoke
signatures on outdated database entries.
Our construction ΠUD uses a non-hiding vector commitment (NHVC)
scheme. The updater maps the database to a vector and commits to the
database. This commitment can be updated efficiently at any time without
needing a revocation mechanism. ZK proofs for reading a database entry
have communication and amortized computation cost independent of
the database size. Therefore, ΠUD is suitable for large databases. We
implement ΠUD and our timings show that it is practical.
In existing privacy-preserving protocols, a ZK proof of a database entry
is intertwined with other tasks, e.g., proving further statements about
the value read from the database or the position where it is stored. FUD

allows us to improve modularity in protocol design by separating those
tasks. We show how to use FUD as building block of a hybrid protocol
along with other functionalities.

Keywords: Vector commitments, ZK proofs, universal composability

1 Introduction

In priced oblivious transfer (POT) [3], a provider offers N messages to a user.
Each message mi is associated with a price pi (∀i ∈ [1, N]). The user purchases
a message mi without disclosing i or pi.

In privacy-preserving billing (PPB) [24], a user receives meter readings from
a meter that measures the consumption c of some service. The provider defines a

? This research is supported by the Luxembourg National Research Fund (FNR) CORE
project “Stateful Zero-Knowledge” (Project code: C17/11650748).

tariff policy that typically consists of several functions. For example, a different
rate ri is applied depending on the time interval i of consumption. The user pays
a price p = ric for her consumption at time interval i and proves that pi is correct
without revealing c, ri or i. Usually, multiple prices p are aggregated and paid
together so that the aggregate reveals little information about each (c, ri, i).

In POT [40,9] (resp. PPB [38,39]) protocols, the user frequently uses a zero-
knowledge (ZK) proof to prove that pi (resp. ri) is correctly associated with i.
The user discloses neither pi (resp. ri) nor i. Nevertheless, the user needs to prove
in ZK statements about i and pi (resp. ri), such as proving that she retrieves mi

and that she has enough funds to pay pi.
We can generalize the task of associating i with pi (resp. ri) as the task of

proving that an entry is read from a database. Consider a database DB of N
entries of the form [i, vri] (∀i ∈ [1, N]), where i is the position and vri the value
stored at that position. The provider establishes the contents of DB, which are
revealed to the user. Then the user proves knowledge of a database entry [i, vri].
The provider does not learn [i, vri] but is guaranteed that [i, vri] is stored in DB.

To allow the user to prove knowledge of an entry [i, vri] from DB, DB needs to
be stored into some data structure that allows for efficient ZK proofs. POT [40,9]
and PPB [38,39] protocols typically use a signature scheme with efficient ZK
proofs of signature possession. The provider computes signatures si on tuples [i,
vri] (∀i ∈ [1, N]) and sends them to the user. Then the user proves knowledge of
a signature si on [i, vri] to prove that i and vri are stored together in DB.

Practical POT and PPB protocols require that the provider be able to update
DB, so the data structure should allow efficient updates. However, if signatures are
used, each time a database entry is updated, a signature revocation mechanism
would be needed to revoke the signatures that sign old database entries.

In addition to proving that [i, vri] ∈ DB, the user needs to prove other
statements about i and vri . Very frequently, in cryptographic protocol design,
these two types of statements are intertwined. I.e, protocols use ZK proofs that
involve both statements to prove that the witness is stored in a data structure
and statements to prove something else about the witness. To improve modularity
in protocol design, we propose to separate those tasks.

Our Contribution: FUD. We use the universal composability (UC) framework [14]
and define an ideal functionality FUD for an updatable database (UD) in §3. We
define UD as a two-party task between a reader R and an updater U . U sets a
database DB and updates it at any time. Both R and U know the content of DB.
R reads in ZK an entry [i, vri] from DB. FUD ensures that it is not possible to
prove that [i, vri] is stored in DB if that is not the case.

In the UC framework, modular protocol design can be achieved by describing
hybrid protocols. In a hybrid protocol, the protocol building blocks are described
by their ideal functionalities, and parties in the real world invoke those ideal
functionalities. We show how to use FUD as building block in a protocol where
FUD handles the tasks of storing a database DB and proving that an entry [i, vri]
is stored in DB, while the ideal functionality FR

ZK for zero-knowledge is used to
prove further statements about i and vri . One challenge when defining a hybrid

protocol is to ensure that two functionalities receive the same input. To this end,
FUD uses the method proposed in [10], which consists in receiving committed
inputs produced by a functionality FNIC for non-interactive commitments. We
show how to use FUD as building block in a protocol designed modularly in §6.

The advantages of our modular design are threefold. First, it simplifies the
security analysis because security proofs in the hybrid model are simpler and
because, by separating the handling of the database from ZK proofs about
other statements, each building block becomes simpler to analyze. Second, it
allows multiple instantiations by replacing each of the ideal functionalities by
any protocols that realize them. Third, it allows the study of the task of creating
an updatable database in isolation, which eases the comparison of different
constructions for it.

Our Contribution: ΠUD. In §4, we propose a construction ΠUD for FUD. ΠUD

is based on non-hiding vector commitments (NHVC) [32,15]. A NHVC scheme
allows us to compute a commitment com to a vector x = (x[1], . . . ,x[N]). To
open the value x[i] committed at position i, an opening wi is computed. The size
of wi is independent of N .

ΠUD works as follows. U sends a database DB to R, and both U and R map
DB to a vector x and compute a commitment com to x. To update an entry [i,
vri] to [i, vr′i], U sends [i, vr′i] to R, and both U and R update com to obtain a
commitment com ′ to a vector x′ such that x′[i] = vr′i, while the other positions
remain unchanged. Therefore, updates do not need any revocation mechanism.
To prove in ZK that an entry [i, vri] is in DB, R computes an opening wi for
position i and a ZK proof of knowledge of (wi, i, vri) that proves that x[i] = vri .

We discuss a variant of FUD and ΠUD where R reads several entries si-
multaneously. We also discuss a variant where the database is of the form
[i, vri,1, . . . , vri,m], i.e., a database where a tuple of values is stored in each entry.

We describe an efficient instantiation of ΠUD (and its variants) that uses
a NHVC scheme based on the DHE assumption, similar to the mercurial VC
scheme in [32]. The size of the public parameters of the scheme grows linearly
with N . The size of com and wi is constant and independent of i and N . The
computation cost of com and wi grows linearly with N . However, the cost of
updating com and wi grows only with the number of updated positions and
is independent of N . Also, after wi is computed, it can be reused to compute
multiple ZK proofs. In our efficiency analysis in §5, we show that the size of a ZK
proof that [i, vri] ∈ DB is independent of the size N of the database. Moreover,
when wi is already computed (after the first proof for position i), the computation
cost is also independent of N . We implement our instantiation of ΠUD and report
timings for updating and reading DB, which attest that our solution is practical.

ΠUD can be regarded as an efficient way of implementing an OR proof, i.e., a
ZK proof for a disjunction of statements. Namely, proving that [i, vri] is in DB is
equivalent to computing an OR proof where the prover proves that he knows at
least one of the entries. Typically, the size of an OR proof would grow with N ,
while our proof is of size independent of N . In fact, ΠUD is suitable for databases
of large sizes. We compare our construction with related work in §7.

2 Modular Design and FNIC

We summarize the UC framework in §A. We use the method in [10] to allow FUD

to be used as building block in modularly-designed protocol. This method allows
us to ensure, when needed, that FUD and other functionalities receive the same
input. In [10], a functionality FNIC for non-interactive commitments is proposed.
FNIC consists of four interfaces:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message m and obtain

a commitment com and an opening open. A commitment com consists of
(com ′, parcom,COM.Verify), where com ′ is the commitment, parcom are the
public parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment com to
check that com contains the correct parcom and COM.Verify.

4. Any party Pi uses the com.verify interface to send (com,m, open) to verify
that com is a commitment to m with opening open.

To ensure that a party Pi sends the same input m to several functionalities,
Pi first uses com.commit to get a commitment com to m with opening open.
Then Pi sends (com,m, open) to each functionality, and each functionality runs
COM.Verify to verify com. Finally, other parties receive com from each function-
alities and use com.validate to validate com. Then, if com received from all the
functionalities is the same, the binding property provided by FNIC ensures that
all the functionalities received the same input m. FUD receives committed inputs
as described in [10].

3 Functionality FUD

FUD interacts with a reader R and an updater U . FUD maintains a database DB
that consists of N entries [i, vri]. FUD has two interfaces ud.update and ud.read:

1. U sends the ud.update.ini message on input (i, vui)∀i∈[1,N]. For all i ∈ [1,N],
FUD updates DB to contain value vui at position i. If vui = ⊥, no update at
position i takes place. FUD sends (i, vui)∀i∈[1,N] to R.

2. R sends ud.read.ini on input (i, vri , comi , openi , comri , openri), where [i, vri]
is a DB entry and (comi , openi) and (comri , openri) are commitments and
openings to i and vri . FUD verifies the commitments and checks that there
is an entry [i, vri] in DB. FUD sends (comi , comri) to U .

FUD stores a counter cr for R and a counter cu for U . These counters are
used to check that R and U have the same version of DB. When U initiates the
ud.update interface, cu is incremented. When FUD sends the update to R, FUD

checks that cu = cr + 1 and then increments cr . In the ud.read interface, FUD

checks that cu = cr , which ensures that they have the same DB.
When invoked by U or R, FUD first checks the correctness of the input and

aborts if it does not belong to the correct domain. FUD also aborts if an interface

is invoked at an incorrect moment in the protocol. For example, R cannot invoke
ud.read if ud.update was never invoked.

The session identifier sid has the structure (R,U , sid ′). Including the identities
in sid ensures that any reader can initiate an instance of FUD with any updater.
FUD implicitly checks that sid in a message equals the one received in the first
invocation. Before FUD queries the simulator S, FUD saves its state, which is
recovered when receiving a response from S. To match a query to a response,
FUD creates a query identifier qid .

Description of FUD. FUD is parameterised by a universe of values Uv and by a
database size N .

1. On input (ud.update.ini, sid , (i, vui)∀i∈[1,N]) from U :
– Abort if sid /∈ (R,U , sid ′).
– For all i ∈ [1,N], abort if vui /∈ Uv.
– If (sid ,DB, cu) is not stored:
• For all i ∈ [1,N], abort if vui = ⊥.
• Set DB← (i, vui)∀i∈[1,N] and cu ← 0 and store (sid ,DB, cu).

– Else:
• For all i ∈ [1,N], if vui 6= ⊥, update DB with [i, vui].
• Increment cu and update DB and cu in (sid ,DB, cu).

– Create a fresh qid and store (qid , (i, vui)∀i∈[1,N], cu).
– Send (ud.update.sim, sid , qid , (i, vui)∀i∈[1,N]) to S.

S. On input (ud.update.rep, sid , qid) from S:
– Abort if (qid ′, (i, vui)∀i∈[1,N], cu ′) such that qid = qid ′ is not stored.
– If (sid ,DB, cr) is not stored, set DB ← (i, vui)∀i∈[1,N] and cr ← 0 and

store (sid ,DB, cr).
– Else:
• Abort if cu ′ 6= cr + 1.
• For all i ∈ [1,N], if vui 6= ⊥, update DB with [i, vui].
• Increment cr and update cr and DB in (sid ,DB, cr).

– Delete the record (qid , (i, vui)∀i∈[1,N], cu ′).
– Send (ud.update.end, sid , (i, vui)∀i∈[1,N]) to R.

2. On input (ud.read.ini, sid , i, vri , comi , openi , comri , openri) from R:
– Abort if (sid ,DB, cr) is not stored.
– Abort if i /∈ [1,N], or if vri /∈ Uv, or if [i, vri] /∈ DB.
– Parse the commitment comi as (com ′i , parcom,COM.Verify).
– Parse the commitment comri as (comr ′i , parcom,COM.Verify).
– Abort if COM.Verify is not a ppt algorithm.
– Abort if 1 6= COM.Verify(parcom, com ′i , i, openi).
– Abort if 1 6= COM.Verify(parcom, comr ′i , vri , openri).
– Create a fresh qid and store (qid , comi , comri , cr).
– Send (ud.read.sim, sid , qid , comi , comri) to S.

S. On input (ud.read.rep, sid , qid) from S:
– Abort if (qid ′, comi , comri , cr ′) such that qid = qid ′ is not stored, or if

cr ′ 6= cu, where cu is in (sid ,DB, cu).
– Delete the record (qid , comi , comri , cr ′).
– Send (ud.read.end, sid , comi , comri) to U .

Variants of FUD. It is straightforward to modify the ud.read interface of FUD

to allow R to read a tuple (i, vri , comi , openi , comri , openri)∀i∈S (S ⊆ [1,N])
of database entries simultaneously. This variant of FUD allows us to reduce
communication rounds when a party in a protocol that uses FUD needs to read
more than one value simultaneously, e.g. a buyer that purchases several items at
once and reads the prices of those items from the database.
FUD can also be modified to store a database of the form [i, vri,1, . . . , vri,m],

i.e., a database where a tuple of values is stored in each entry. In the ud.update
interface, U sends (i, vui,1, . . . , vui,m)∀i∈[1,N], and each value vui,j (j ∈ [1,m])
can be updated or not independently of other values in the same entry. In
the ud.read interface, R sends (i, vri,1, . . . , vri,m) along with commitments and
openings to the position and values, i.e., all the values in an entry are read. The
position j ∈ [1,m] of each value vri,j is not hidden from U . This variant of FUD

is useful for protocols where a party needs to read a tuple of values and prove
that they are stored in the same entry and that each vri,j is stored at a certain
position j within the entry, e.g. a user that consumes some utility and reads a
pricing function that is represented by a tuple of values.
FUD can also be modified to interact with two parties such that both of them

can read and update the database, or such that a party reads and updates and
the other party receives read and update operations. ΠUD can be easily adapted
to realize the variants of FUD discussed here.

4 Construction ΠUD

4.1 Building Blocks

Non-Hiding Vector Commitments. A non-hiding vector commitment (NHVC)
scheme allows one to succinctly commit to a vector x = (x[1], . . . ,x[n]) ∈ Mn

such that it is possible to compute an opening w to x[i], with the size of w
independent of i and n. The scheme consists of the following algorithms.

VC.Setup(1k, `). On input the security parameter 1k and an upper bound ` on
the size of the vector, generate the parameters of the vector commitment
scheme par , which include a description of the message space M.

VC.Commit(par ,x). On input a vector x ∈Mn (n ≤ `), output a commitment
com to x.

VC.Prove(par , i,x). Compute an opening w for x[i].
VC.Verify(par , com, x, i,w). Output 1 if w is a valid opening for x being at

position i and 0 otherwise.
VC.ComUpd(par , com, j, x, x′). On input a commitment com with value x at

position j, output a commitment com ′ with value x′ at position j. The other
positions remain unchanged.

VC.WitUpd(par ,w , i, j, x, x′). On input an opening w for position i valid for
a commitment com with value x at position j, output an opening w ′ for
position i valid for a commitment com ′ with value x′ at position j.

A non-hiding VC scheme must be correct and binding [15].

Ideal Functionality FCRS.Setup
CRS . Our protocol uses the functionality FCRS.Setup

CRS for

common reference string generation in [14]. FCRS.Setup
CRS interacts with any parties

P that obtain the common reference string, and consists of one interface crs.get.
A party P uses the crs.get interface to request and receive the common reference
string crs from FCRS.Setup

CRS . In the first invocation, FCRS.Setup
CRS generates crs by

running algorithm CRS.Setup. The simulator S also receives crs.

Ideal Functionality FAUT. Our protocol uses the functionality FAUT for an
authenticated channel in [14]. FAUT interacts with a sender T and a receiver
R, and consists of one interface aut.send. T uses the aut.send interface to send
a message m to FAUT. FAUT leaks m to the simulator S and, after receiving a
response from S, FAUT sends m to R. S cannot modify m. The session identifier
sid contains the identities of T and R.

Ideal Functionality FR
ZK. Let R be a polynomial time computable binary relation.

For tuples (wit , ins) ∈ R we call wit the witness and ins the instance. Our
protocol uses the ideal functionality FR

ZK for zero-knowledge in [14]. FR
ZK is

parameterized by a description of a relation R, runs with a prover P and a
verifier V , and consists of one interface zk.prove. P uses zk.prove to send a witness
wit and an instance ins to FR

ZK. FR
ZK checks whether (wit , ins) ∈ R, and, in that

case, sends the instance ins to V. The simulator S learns ins but not wit .
We give the security definitions for non-hiding VC schemes and depict

FCRS.Setup
CRS , FAUT and FR

ZK in §B.

4.2 Description of ΠUD

In ΠUD, an NHVC com is used to commit to the database DB. To this end,
com commits to a vector x such that x[i] = vri for all i ∈ [1,N]. FVC.Setup

CRS is
parameterized by VC.Setup and generates the parameters par .

In the ud.update interface, U uses FAUT to send toR the update (i, vui)∀i∈[1,N].
In the first execution of this interface, U and R run VC.Commit to commit
to (i, vui)∀i∈[1,N]. In the following executions, U and R update com by using
VC.ComUpd. If R already stores openings wi, R runs VC.WitUpd to update them.

In the ud.read interface, R uses FR
ZK to prove that comi and comri commit to

a position i and a value vri such that x[i] = vri , where x is the vector committed
in com. The witness of R includes an opening wi. R runs VC.Prove to compute
it if it is not stored.

Description of ΠUD. N denotes the database size. The universe of values Uv is
given by the message space of the NHVC scheme.

1. On input (ud.update.ini, sid , (i, vui)∀i∈[1,N]):

– If (sid , par , com,x, cu) is not stored:

• U uses crs.get to obtain the parameters par from FVC.Setup
CRS . To com-

pute par , FVC.Setup
CRS runs VC.Setup(1k,N).

• U initializes a counter cu ← 0 and a vector x such that x[i] = vui for
all i ∈ [1,N]. U runs com ← VC.Commit(par ,x) and stores (sid , par ,
com,x, cu).

– Else:

• U sets cu ′ ← cu + 1, x′ ← x and com ′ ← com. For all i ∈ [1,N]
such that vui 6= ⊥, U computes com ′ ← VC.ComUpd(par , com ′, i,
x′[i], vui) and x′[i]← vui .
• U replaces the stored tuple (sid , par , com,x, cu) by (sid , par , com ′,

x′, cu ′).

– U uses aut.send to send the message 〈(i, vui)∀i∈[1,N], cu ′〉 to R.
– If (sid , par , com,x, cr) is stored and cu ′ 6= cr + 1, R aborts.
– For j = 1 to N , if (sid , j,wj) is stored, R sets w ′j ← wj and, for all
i ∈ [1,N] such that vui 6= ⊥, w ′j ← VC.WitUpd(par ,w ′j , j, i,x[i], vui). R
replaces (sid , j,wj) by (sid , j,w ′j).

– R performs the same operations as U to set or update a tuple (sid , par ,
com,x, cr).

– R outputs (ud.update.end, sid , (i, vui)∀i∈[1,N]).

2. On input (ud.read.ini, sid , i, vri , comi , openi , comri , openri):

– R parses comi as (com ′i , parcom,COM.Verify).
– R parses comri as (comr ′i , parcom,COM.Verify).
– R aborts if COM.Verify is not a ppt algorithm.
– R aborts if 1 6= COM.Verify(parcom, com ′i , i, openi).
– R aborts if 1 6= COM.Verify(parcom, comr ′i , vri , openri).
– R takes the stored tuple (sid , par , com,x, cr) and aborts if x[i] 6= vri .
– If (sid , i,wi) is not stored, R runs wi ← VC.Prove(par , i,x) and stores

(sid , i,wi).
– R sets the witness wit ← (wi, i, openi , vri , openri) and the instance ins ←

(par , com, parcom, com ′i , comr ′i , cr). R uses zk.prove to send wit and ins
to FR

ZK. The relation R is

R ={(wit , ins) :

1 = COM.Verify(parcom, com ′i , i, openi) ∧
1 = COM.Verify(parcom, comr ′i , vri , openri) ∧
1 = VC.Verify(par , com, vri , i,wi)}

– U receives ins = (par ′, com ′, parcom, com ′i , comr ′i , cr) from FR
ZK.

– U takes the stored tuple (sid , par , com,x, cu) and aborts if cr 6= cu, or
if par ′ 6= par , or if com ′ 6= com.

– U sets comi ← (com ′i , parcom,COM.Verify) and comri ← (comr ′i , parcom,
COM.Verify). (COM.Verify is part of the description of R.)

– U outputs (ud.read.end, sid , comi , comri).

Theorem 1. ΠUD securely realizes FUD in the (FVC.Setup
CRS , FAUT, FR

ZK)-hybrid
model if the NHVC scheme is binding.

We analyze in detail the security of ΠUD in §C.

Variants of ΠUD. In §3, we describe a variant of FUD where R reads several
database entries simultaneously, and another variant where the database entries
are of the form [i, vri,1, . . . , vri,m]. To construct the former, in the read phase, R
simply needs to compute openings wi for each entry read. Relation R replicates
the equations described above for each entry read.

For the latter, com commits to a vector x of length N ×m such that x[(i−
1)m+ j] = vri,j for all i ∈ [1,N] and j ∈ [1,m]. In the update phase, each vector
component can be updated independently of others regardless of whether they
belong to the same database entry. To read the database entry i, R needs to
compute openings (w(i−1)m+1, . . . ,wim) to open the positions [(i− 1)m+ 1, im]
of the committed vector x. R must also prove that those positions belong to the
database entry i. To this end, the relation R is modified to involve a witness
wit ← (i, openi , {w(i−1)m+j , vri,j , openri,j}∀j∈[1,m]) and an instance ins ← (par ,
com, parcom, com ′i , {comr ′i,j}∀j∈[1,m], cr)

R ={(wit , ins) :

1 = COM.Verify(parcom, com ′i , i, openi) ∧
{1 = COM.Verify(parcom, comr ′i,j , vri,j , openri,j) ∧
1 = VC.Verify(par , com, vri,j , (i− 1)m+ j,w(i−1)m+j)}∀j∈[1,m]}

5 Instantiation and Efficiency Analysis

Bilinear maps. Let G, G̃ and Gt be groups of prime order p. A map e : G×G̃→ Gt
must satisfy bilinearity, i.e., e(gx, g̃y) = e(g , g̃)xy; non-degeneracy, i.e., for all
generators g ∈ G and g̃ ∈ G̃, e(g , g̃) generates Gt; and efficiency, i.e., there exists
an efficient algorithm G(1k) that outputs the pairing group setup grp ← (p,G,
G̃,Gt, e, g , g̃) and an efficient algorithm to compute e(a, b) for any a ∈ G, b ∈ G̃.

`-Diffie-Hellman Exponent (DHE) assumption. Let (p,G, G̃,Gt, e, g , g̃)← G(1k)
and α ← Zp. Given (p,G, G̃,Gt, e, g , g̃) and a tuple (g1, g̃1, . . . , g`, g̃`, g`+2, . . . ,

g2`) such that gi = g(αi) and g̃i = g̃(αi), for any p.p.t. adversary A, Pr[g(α`+1) ←
A(p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`)] ≤ ε(k).

NHVC scheme. We use a NHVC scheme secure under the `-DHE assumption [32].

VC.Setup(1k, `). Generate groups (p,G, G̃,Gt, e, g , g̃) ← G(1k), pick α ← Zp
and compute (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`), where gi = g(αi) and g̃i = g̃(αi).
Output par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp).

VC.Commit(par ,x). Let |x| = n ≤ `. Output com =
∏n
j=1 g

x[j]
`+1−j .

VC.Prove(par , i,x). Let |x| = n ≤ `. Output w =
∏n
j=1,j 6=i g

x[j]
`+1−j+i .

VC.Verify(par , com, x, i,w). Output 1 if e(com, g̃i) = e(w , g̃) · e(g1, g̃`)
x, else 0.

VC.ComUpd(par , com, j, x, x′). Output com ′ = com · gx
′−x

`+1−j .

VC.WitUpd(par ,w , i, j, x, x′). If i = j, output w , else w ′ = w · gx
′−x

`+1−j+i .

This NHVC scheme is correct and binding under the `-DHE assumption. This
theorem is proven in §D.

Commitment scheme for FNIC. A commitment scheme consists of algorithms
CSetup, Com and VfCom. CSetup(1k) generates the parameters parc, which in-
clude a description of the message spaceM. Com(parc , x) outputs a commitment
com to x ∈M and an opening open. VfCom(parc , com, x , open) outputs 1 if com
is a commitment to x with opening open or 0 otherwise.

We use the Pedersen commitment scheme [37]. CSetup(1k) takes a group G of
prime order p with generator g , picks random α, computes h ← gα and sets the
parameters parc ← (G, g , h), which include a description of the message spaceM
← Zp. Com(parc , x) picks random open ← Zp and outputs a commitment com
← gxhopen to x ∈ M and an opening open. VfCom(parc , com, x , open) outputs
1 if com = gxhopen . In [10], it is shown that any trapdoor commitment scheme,
such as Pedersen commitments, realizes FNIC.

ZK proof for FR
ZK. To instantiate FR

ZK, we use the scheme in [12]. In [12], a
UC ZK protocol proving knowledge of exponents (w1, . . . , wn) that satisfy the
formula φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (1)

The formula φ(w1, . . . , wn) consists of conjunctions and disjunctions of “atoms”.

An atom expresses group relations, such as
∏k
j=1 g

Fj

j = 1, where the gj ’s are
elements of prime order groups and the Fj ’s are polynomials in the variables
(w1, . . . , wn).

A proof system for (1) can be transformed into a proof system for more
expressive statements about secret exponents sexps and secret bases sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (2)

The transformation adds an additional base h to the public bases. For each
gj ∈ sbases, the transformation picks a random exponent ρj and computes a
blinded base g′j = gjh

ρj . The transformation adds g′j to the public bases bases,

ρj to the secret exponents sexps, and rewrites g
Fj

j into g′j
Fjh−Fjρj .

The proof system supports pairing product equations
∏k
j=1 e(gj , g̃j)

Fj = 1 in
groups of prime order with a bilinear map e, by treating the target group Gt as the
group of the proof system. The embedding for secret bases is unchanged, except
for the case in which both bases in a pairing are secret. In this case, e(gj , g̃j)

Fj

must be transformed into e(g′j , g̃
′
j)
Fje(g′j , h̃)−Fj ρ̃je(h, g̃′j)

−Fjρje(h, h̃)Fjρj ρ̃j .

Signature schemes. We use a signature scheme for the ZK proof for relation
R in §5.1. A signature scheme consists of the algorithms KeyGen, Sign and
VfSig. KeyGen(1k) outputs a secret key sk and a public key pk , which include a
description of the message space M. Sign(sk ,m) outputs a signature s on the
message m ∈M. VfSig(pk , s,m) outputs 1 if s is a valid signature on m and 0
otherwise. This definition can be extended to blocks of messages m̄ = (m1, . . . ,
mn). In this case, KeyGen(1k , n) receives the maximum number n of messages as
input. A signature scheme must be existentially unforgeable [22].

We use the structure-preserving signature (SPS) scheme in [2]. In SPSs, the
public key, the messages, and the signatures are group elements in G and G̃, and
verification must consist purely in the checking of pairing product equations. We
employ SPSs to sign group elements, while still supporting efficient ZK proofs of
signature possession. In this SPS scheme, a elements in G and b elements in G̃
are signed.

KeyGen(grp, a, b). Let grp ← (p,G, G̃,Gt, e, g , g̃) be the bilinear map parameters.
Pick at random u1, . . . , ub, v, w1, . . . wa, z ← Z∗p and compute Ui = gui , i ∈
[1..b], V = g̃v, Wi = g̃wi , i ∈ [1..a] and Z = g̃z. Return the verification key
pk ← (grp, U1, . . . , Ub, V,W1, . . . ,Wa, Z) and the signing key sk ← (pk , u1,
. . . , ub, v, w1, . . . , wa, z).

Sign(sk , 〈m1, . . . ,ma+b〉). Pick r ← Z∗p, set R← gr, S ← gz−rv
∏a
i=1m

−wi
i , and

T ← (g̃
∏b
i=1m

−ui
a+i)

1/r, and output the signature s ← (R,S, T).
VfSig(pk , s, 〈m1, . . . ,ma+b〉). Output 1 if e(R, V)e(S, g̃)

∏a
i=1 e(mi,Wi) = e(g,

Z) and e(R, T)
∏b
i=1 e(Ui,ma+i) = e(g, g̃).

5.1 UC ZK Proof for Relation R

To instantiate FR
ZK with the protocol in [12], we need to instantiate R with our

chosen NHVC and commitment schemes. Then we need to express R following
the notation for UC ZK proofs described above.

In R, we need to prove that the position i committed in com ′i equals the
position opened in the NHVC com thorough the verification equation e(com, g̃i) =
e(w , g̃) · e(g1, g̃`)

x. In our NHVC scheme, α is secret, which makes the relation

between g̃i = g̃α
i

and i not efficiently provable. To solve this problem, the public
parameters are extended with SPSs that bind g i with g̃i. Given the parameters
par = (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp,R = Zp), and

the key pair (sk , pk), for i ∈ [1, `], FCRS.Setup
CRS computes si ← Sign(sk , 〈gsid , g̃i,

g̃ i〉), where sid is the session identifier. (We note that, in many practical settings,
U can compute the parameters and signatures.) We remark that these signatures
do not need to be updated when the database is updated.

Let (U1, U2, V,W1, Z) be the public key of the signature scheme. Let (R,S,
T) be a signature on (gsid , g̃i, g̃

i). Let (g , h) be the parameters of the Pedersen
commitment scheme. R involves proofs about secret bases and we use the trans-
formation described above for those proofs. The base h is also used to randomize
secret bases in G, and another base h̃ ← G̃ is added to randomize bases in G̃.
Following the notation in [12], we describe the proof as follows.

Ki, openi , v, openri , g̃i,w , R, S, T :

comi = g ihopeni ∧ comri = gvhopenri ∧ (3)

e(R, V)e(S, g̃)e(gsid ,W1)e(g, Z)−1 = 1 ∧ (4)

e(R, T)e(U1, g̃i)e(U2, g̃)ie(g, g̃)−1 = 1 ∧ (5)

e(com, g̃i)
−1e(w , g̃)e(g1, g̃`)

v = 1 (6)

Equation 3 proves knowledge of the openings of the Pedersen commitments comi

and comri . Equation 4 and Equation 5 prove knowledge of a signature (R,S, T)
on a message 〈gsid , g̃i, g̃

i〉. Equation 6 proves that the value v in comri is equal
to the value committed in the position i of the vector commitment com.

Instantiations of variants of ΠUD. To instantiate the variant of ΠUD where several
database entries are read simultaneously, we replicate the ZK proof described
above for each entry read. To instantiate the variant with database entries [i, vri,1,
. . . , vri,m], we compute signatures si ← Sign(sk , 〈g i, gsid , g̃(i−1)m+1, . . . , g̃im〉) to
bind the entry i to the positions [(i− 1)m+ 1, im] that need to be opened in the
committed vector. The public key of the signature scheme is now (U1, . . . , Um, V,
W1,W2, Z). The ZK proof for relation R is:

Ki, openi , {vri,j , openri,j , g̃(i−1)m+j ,w(i−1)m+j}∀j∈[1,m], R, S, T :

comi = g ihopeni ∧ {comri,j = gvri,j hopenri,j }∀j∈[1,m] ∧
e(R, V)e(S, g̃)e(g,W1)ie(gsid ,W2)e(g, Z)−1 = 1 ∧
e(R, T)e(U1, g̃(i−1)m+1) · · · e(Um, g̃im)e(g, g̃)−1 = 1 ∧
{e(com, g̃(i−1)m+j)

−1e(w(i−1)m+j , g̃)e(g1, g̃`)
vri,j = 1}∀j∈[1,m]

The signature on 〈g i, gsid , g̃(i−1)m+1, . . . , g̃im〉 also binds the positions of the
database entry i together and reveals the position j ∈ [1,m] of each value vri,j
within the entry.

5.2 Efficiency Analysis

We analyze the storage, communication, and computation costs of our instantia-
tion of ΠUD.

Storage Cost. R and U store the common reference string, whose size grows
linearly with N . Throughout the protocol execution, R and U also store the
last update of com and the committed vector. R stores the openings wi. In
conclusion, the storage cost is linear in N .

Communication Cost. In the ud.update interface, U sends (i, vui)∀i∈[1,N] to
R. The communication cost is linear in the number of entries updated,
except for the first update in which all entries must be initialized. In the
ud.read interface, R sends an instance and a ZK proof to U . The size of the
witness and of the instance is constant and independent of N . Therefore, the
communication cost of the proof is constant. In conclusion, after the first
update phase, the communication cost does not depend on N .

Computation Cost. In the ud.update interface, U and R update com with cost
linear in the number of updates (except for the first update where all the
positions are initialized). R also updates the stored openings wi with cost
linear in the number of updates. In the ud.read interface, if wi is not stored,
R computes it with cost that grows linearly with N . However, if wi is stored,
the computation cost of the proof is constant and independent of N .

We note that it is possible to defer opening updates to the ud.read interface,
so as to only update openings that are actually needed to compute ZK proofs.
Thanks to that, the computation cost in the ud.update interface is constant. In
the ud.read interface, if wi is stored but needs to be updated, the computation
cost grows linearly with the number of updates but it is independent of N .
The only overhead introduced by deferring opening updates is the need to
store the tuples (i, vui)∀i∈[1,N] sent by U .

In summary, after initializing com and the openings wi, the communication and
computation costs are independent of N , which makes our instantiation of ΠUD

practical for large databases.

5.3 Implementation and Efficiency Measurements

We have implemented our instantiation of ΠUD in the Python programming
language, using the Charm cryptographic framework [4], on a computer equipped
with an Intel Core i5-7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM.
The BN256 curve was used for the pairing group setup.

To compute the UC ZK proofs for R, we use the compiler in [12]. The public
parameters of the proof system contain a public key of the Paillier encryption
scheme, the parameters for a multi-integer commitment scheme and the specifica-
tion of a DSA group. (We refer to [12] for a description of how those primitives
are used in the compiler.) The cost of a proof depends on the number of elements
in the witness and of the number of equations composed by Boolean ANDs. The
computation cost for the prover of a Σ-protocol for R involves one evaluation
of each of the equations and one multiplication per value in the witness. The
compiler in [12] extends a Σ-protocol and requires, additionally, a computation
of a multi-integer commitment that commits to the values in the witness, an eval-
uation of a Paillier encryption for each of the values in the witness, a Σ-protocol
to prove that the commitment and the encryptions are correctly generated, and
3 exponentiations in the DSA group. The computation cost for the verifier, as
well as the communication cost, also depends on the number of values in the
witness and on the number of equations. Therefore, as the number of values in
the witness and of equations is independent of N in our proof for relation R, the
computation and communication costs of our proof do not depend on N .

Table 1 lists the execution times of the update and read interfaces of the
protocol, in seconds. The execution times of the interfaces of the protocol have
been evaluated against the size N of the database, and against the security
parameter of the Paillier encryption algorithm.

In the first update, the public parameters of all the building blocks are
computed, and the database is set up by computing com. In the second row of
Table 1, we show the cost of just computing com, which is virtually the same
as that of computing an opening wi. The computation time of com and wi is
very small. (As required by our applications in §6, the committed vector that we
use consists of small numbers rather than random values in Zp.) In the 1-entry
update, one database entry is modified and com is updated. The cost of updating

Table 1. ΠUD execution times in seconds

1024 bit key 2048 bit key

Interface N = 100 N = 1000 N = 100 N = 1000

First update 0.6844 5.9952 0.7940 6.0822

Computation of com or wi 0.0032 0.03787 0.0032 0.03787

1-entry update of com or wi 0.0001 0.0001 0.0001 0.0001

Read 0.7496 0.7545 3.8945 3.5911

an opening wi is virtually the same. As can be seen, the cost of the first update
grows linearly with the size N of the database, as does the cost of setting up com
or wi, whereas the cost of updating com or wi is very small and independent of
N . The execution times for the read interface depend greatly upon the security
parameters for the Paillier encryption scheme. However, the execution time is
independent of the database size N .

6 Modular Design with FUD and Applications

Consider the following relation R′:

R′ ={(wit , ins) : [i, vri] ∈ DB ∧ 1 = predi(i) ∧ 1 = predv(vri)}

where the witness is wit = (i, vri) and the instance is ins = DB. predi and predv
represent predicates that i and vri must fulfill, e.g., predicates that require i and
vri to belong to a range or set of values.

We would like to construct a ZK protocol for R′ that separates each of the
equations of R′. We show how this protocol is constructed by using FUD and
FNIC as building blocks, along with the functionalities FRi

ZK and FRv

ZK.

1. On input DB, the verifier uses the ud.update interface to send DB to FUD,
which sends DB to the prover.

2. On input (i, vri), the prover checks that [i, vri] ∈ DB.
3. The prover runs the com.setup interface of FNIC. The prover uses the

com.commit interface of FNIC on input i to obtain a commitment comi

with opening openi . Similarly, the prover obtains from FNIC a commitment
comri to vri with opening openri .

4. The prover uses ud.read to send (i, vri , comi , openi , comri , openri) to FUD.
FUD sends comi and comri to the verifier.

5. The verifier runs the com.setup interface of FNIC. The verifier uses the
com.validate interface of FNIC to validate the commitments comi and comri .
Then the verifier stores comi and comri and sends a message to the prover
to acknowledge the receipt of the commitments.

6. The prover parses the commitment comi as (com ′i , parcom,COM.Verify). The
prover sets the witness wit ← (i, openi) and the instance ins ← (parcom,

com ′i). The prover uses the zk.prove interface to send wit and ins to FRi

ZK,
where Ri is

Ri = {(wit , ins) : 1 = COM.Verify(parcom, com ′i , i, openi) ∧ 1 = predi(i)}

7. The verifier receives ins from FRi

ZK. The verifier checks that the commitment
in ins is equal to the stored commitment comi . If it is equal, the binding
property guaranteed by FNIC ensures that FUD and FRi

ZK received as input
the same position i.

8. The last two steps are replicated to prove that vri fulfills 1 = predv(vri) by
using FRv

ZK.

We think that a modular design has two advantages. First, it allows for a
simple security analysis. A security proof of a protocol described in the hybrid
model is much simpler than a proof that requires reductions to the security
properties of different cryptographic primitives. Moreover, each of the building
blocks realizes a simpler task and thus requires a simpler protocol with a less
involved security analysis. Second, it facilitates the study in isolation of how to
create efficient and secure ZK data structures. Namely, different constructions
for FUD can easily be compared in terms of security and efficiency.

Application to POT. The POT protocols in [40,9] are based on previously
proposed oblivious transfer (OT) protocols. However, they do not use OT as a
building block. Instead, the OT protocol is modified ad-hoc to create the POT
protocol, and its security has to be reanalyzed when analyzing the security of
the POT protocol.
FUD can be used to design a POT protocol modularly. The database DB

consists of entries [i, pi], where pi is the price to be paid for message mi. To
purchase mi, the buyer uses the ud.read interface of FUD to read the entry [i, pi].
The provider receives the commitments comi to i and comri to pi. comri is used
as input to a functionality FRv

ZK where the buyer proves that he subtracts the
price pi from his account. comi is used as input to a functionality for oblivious
transfer (modified to receive committed inputs as described in [10]) to allow the
buyer to retrieve mi.

Therefore, FUD allows the design of a POT protocol that uses a functionality
for OT as building block. Thanks to that, the POT protocol can be instantiated
with multiple OT schemes and their security does not need to be reanalyzed.
Moreover, FUD allows the provider to update prices at any time.

Application to PPB. In the PPB protocols in [38,39], a meter reading comprises
the consumption c and the time interval i of consumption. The tariff policy
associates a different function p = fi(c) to each time interval (and possibly to
each consumption interval). FUD can be used to design a PPB protocol modularly,
where the database DB consists of entries [i, fi]. The PPB protocol works as
follows. First, the meter outputs a signed meter reading (c, i). The user reads [i,
fi] through FUD, and the provider receives commitments comi to i and comri to
fi. comi is used as input to a functionality FRi

ZK to prove that i equals the value

signed in the meter reading. comri is used as input to a functionality FRv

ZK to
prove that p = fi(c). If fi is represented by a tuple of values (e.g. the coefficients
of a polynomial) the variant of FUD for databases of the form [i, vri,1, . . . , vri,m]
should be used. If the formula fi also changes with the consumption interval, the
database can also store the minimum and maximum values of the consumption
interval to allow the user to prove that he uses the right formula. Using FUD

allows the design of PPB protocols modularly and allows the provider to modify
the pricing policies efficiently and at any time.

7 Related Work

Accumulators. A cryptographic accumulator [6] allows us to represent a set X
succinctly as a single accumulator value A. To prove that a value x ∈ X, a
party computes a witness Wx whose size is independent of X. Some accumulator
schemes are equipped with efficient ZK proofs to prove knowledge of Wx such
that x ∈ X.

NHVC schemes are similar to accumulator schemes that use a trusted setup
and are non-hiding [13,5,36,11], i.e., A does not hide X. (Recently, hiding accu-
mulators [18,20] have been proposed.) The instantiation of NHVC schemes based
on the DHE assumption resembles the accumulator scheme in [11]. The main
difference between accumulators and NHVC schemes is that, while accumulators
allow us to commit to a set, NHVC schemes allow us to commit to a vector of
messages, where each message is committed at a specific position. This allows
parties to prove statements about the position i and about the value vri stored
at i, which is needed for FUD.

Vector Commitments. VC schemes [32,15] can be non-hiding and hiding, and
can be based on different assumptions such as CDH, RSA and DHE. It would
be possible to instantiate our construction under the more standard CDH or
RSA assumptions. However, the instantiation of NHVC schemes based on DHE
has efficiency advantages. A mercurial VC scheme based on DHE was proposed
in [32], and subsequently non-hiding and hiding DHE VC schemes were used
in [30,23,27]. In our instantiation of ΠUD, we use a NHVC scheme based on DHE
that is extended with a ZK proof of knowledge of a witness wi to prove that a
value vri is stored at position i. For this proof, a signature scheme is used along
with the NHVC scheme.

Recently, in [28], subvector commitments (SVC) are proposed. In SVC, a
commitment can be opened to a set of positions such that the size of the opening
does not depend on the size of the set. A construction for SVC secure under the
cube Diffie-Hellman assumption is given, in which the public parameter size grows
quadratically with the vector length. Our functionality FUD only requires to
open one vector component at a time. SVC may be used to construct the variant
of FUD where several positions are read simultaneously, or the variant where the
database entries are of the form [i, vri,1, . . . , vri,m]. In the read phase, SVC would
yield a ZK proof where one opening can be used to open several positions (at the

expense of increasing the storage cost of the public parameters). Despite that
SVC provides openings of size independent of the number of positions open, we
note that the entire witness of the ZK proof would still grow with the number of
positions opened, and thus the efficiency of those proofs would not be independent
of the number of positions opened. In [28,7], constructions for SVC based on
groups of hidden order are proposed, which are better suited for bit vectors.

Polynomial commitments allow a committer to commit to a polynomial and
open the commitment to an evaluation of the polynomial. Polynomial commit-
ments can be used as vector commitments by committing to a polynomial that
interpolates the vector to be committed. In [25], a construction of polynomial
commitments from the SDH assumption is proposed. The polynomial commit-
ment scheme from SDH has the disadvantage that efficient updates cannot be
computed without knowledge of the trapdoor. A further generalization of vector
commitments and polynomial commitments are functional commitments [31,28].

Zero-Knowledge Data Structures. Zero-Knowledge Sets (ZKS) [34] allow a prover
P to commit to a setX and to subsequently prove to a verifier V (non-)membership
of an element x in X. Zero-Knowledge Databases (ZKDB) are similar to ZKS but
each element x ∈ X is associated with a value v, in such a way that a proof that
x ∈ X reveals v to V. Both ZKS and ZKDB are two-party protocols between a
prover and a verifier. Zero-knowledge requires that proofs of (non-)membership
reveal nothing else beyond (non-)membership, not even the set size.

A ZKS with short proofs for membership and non-membership is proposed
in [32] and an updatable ZKDB with short proofs is proposed in [15]. In [25],
constructions for “nearly” ZKS and ZKDB, which do not hide the size of the
set or database, are given. In [21], a construction for zero-knowledge lists (ZKL)
is proposed, where a list is defined as an ordered set. In contrast to our work,
existing constructions for ZKS, ZKDB and ZKL are not updatable, with the
exceptions of the ZKDB in [33,15].

The main difference between ZK data structures and our work is that ZK
data structures hide the database content from the verifier, while in our work
the database is public. Another difference is that our database is oblivious in
the sense that it provides ZK proofs about a committed position i and value
v, without revealing i or v. In existing ZK data structures, the prover reveals
i and v along with the proof to the verifier. This property allows our database
to be used as building block in privacy-preserving protocols where i and v must
remain hidden from the verifier. As for modular design, in those works a method
to integrate modularly the proposed ZK data structures as building blocks of
other protocols is not given.

ZK proofs for large datasets. In most ZK proofs, the computation and communica-
tion costs grow linearly with the size of the witness, which is inadequate for proofs
about datasets of large size N . However, some techniques attain costs sublinear in
N . Probabilistically checkable proofs [26] achieve verification cost sublinear in N ,
but the cost for the prover is linear in N . In succinct non-interactive arguments
of knowledge [19], verification cost is independent of N , but the cost for the

prover is still linear in N . ZK proofs for oblivious RAM programs [35] consist of
a setup phase where the prover commits to the dataset, with cost linear in N
for the prover and constant for the verifier. After setup, multiple proofs can be
computed about the dataset with cost sublinear (proportional to the runtime of
an ORAM program) for prover and verifier.

Our construction is somehow similar to [35], i.e. a database is committed,
and then ZK proofs are computed. Storage cost is linear in N . However, the
verification cost of a ZK proof is constant and independent of N . To compute a
ZK proof, only the cost of computing an opening wi is linear in N , but wi can
be reused and updated with cost independent of N . Therefore, computing a ZK
proof has an amortized cost independent of N , which makes our construction
practical for large databases.

8 Conclusion and Future Work

We have proposed an ideal functionality FUD and a construction ΠUD for an
updatable database. In addition to POT and PPB, (non-)updatable databases
are implicitly used as building blocks of other protocols. For example, many
oblivious transfer with access control [16,8,1,29] protocols and other privacy
preserving access control protocols [27] use a database that associates the index
i of messages mi with an access control policy ACPi (∀i ∈ [1, N]). As another
example, privacy-preserving client-side profiling protocols [17] use a database that
stores a codification of a profiling algorithm. These protocols also use signatures
as a way of implementing the database. In those protocols, the reader needs to
remain anonymous and unlinkable towards the updater. Therefore, to be used
in those protocols, FUD and ΠUD need to be modified to interact with multiple
readers and to guarantee unlikability of readers towards the updater.

References

1. Abe, M., Camenisch, J., Dubovitskaya, M., Nishimaki, R.: Universally composable
adaptive oblivious transfer (with access control) from standard assumptions. In:
DIM’13, Proceedings of the 2013 ACM Workshop on Digital Identity Management.
pp. 1–12

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: CRYPTO 2011. pp. 649–666

3. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: EUROCRYPT 2001. pp. 119–135

4. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryp-
tographic Engineering 3(2), 111–128 (2013)

5. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential systems.
In: CT-RSA 2009. pp. 295–308

6. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures (extended abstract). In: EUROCRYPT ’93. pp. 274–285

7. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applica-
tions to iops and stateless blockchains. In: CRYPTO

8. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: Proceedings of the 2009 ACM Conference on Computer and Communications
Security, CCS 2009. pp. 131–140

9. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer
with rechargeable wallets. In: Financial Cryptography and Data Security, 14th
International Conference, FC 2010. pp. 66–81

10. Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular protocol
design and applications to revocation and attribute tokens. In: CRYPTO 2016. pp.
208–239

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: PKC 2009. pp. 481–500

12. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally compos-
able zero-knowledge protocols. In: ASIACRYPT 2011. pp. 449–467

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO 2002. pp. 61–76

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001 (ePrint 2000/067 version 14-Dec-2005). pp. 136–145
(2001)

15. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC 2013.
pp. 55–72

16. Coull, S.E., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. In: PKC 2009. pp. 501–520

17. Danezis, G., Kohlweiss, M., Livshits, B., Rial, A.: Private client-side profiling with
random forests and hidden markov models. In: PETS 2012. pp. 18–37

18. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: CT-RSA 2015. pp. 127–144

19. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: EUROCRYPT 2013. pp. 626–645

20. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set algebra. In: ASIACRYPT 2016. pp. 67–100

21. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order
queries and order statistics on a list. In: ACNS 2015. pp. 149–171

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

23. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise p-signatures and non-
interactive anonymous credentials with efficient attributes. In: Cryptography and
Coding - 13th IMA International Conference, IMACC 2011. pp. 431–450

24. Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering billing.
In: PETS 2011. pp. 192–210

25. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials
and their applications. In: ASIACRYPT 2010. pp. 177–194

26. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: ACM STOC 1992. pp. 723–732

27. Kohlweiss, M., Rial, A.: Optimally private access control. In: WPES 2013. pp.
37–48

28. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: CRYPTO 2019. pp. 530–560

29. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Adaptive oblivious
transfer with access control from lattice assumptions. In: ASIACRYPT 2017. pp.
533–563

30. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: CRYPTO 2012. pp. 571–589

31. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions.
In: ICALP 2016. pp. 30:1–30:14

32. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: TCC 2010. pp. 499–517

33. Liskov, M.D.: Updatable zero-knowledge databases. In: ASIACRYPT 2005. pp.
174–198

34. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS 2003. pp. 80–91
35. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for

RAM programs. In: EUROCRYPT 2017. pp. 501–531
36. Nguyen, L.: Accumulators from bilinear pairings and applications. In: CT-RSA

2005. pp. 275–292
37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO ’91. pp. 129–140
38. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: WPES 2011. pp. 49–60
39. Rial, A., Danezis, G., Kohlweiss, M.: Privacy-preserving smart metering revisited.

Int. J. Inf. Sec. 17(1), 1–31 (2018)
40. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivi-

ous transfer. In: Pairing 2009. pp. 231–247

A Universally Composable Security

We prove our protocol secure in the universal composability framework [14]. The
UC framework allows one to define and analyze the security of cryptographic
protocols so that security is retained under an arbitrary composition with other
protocols. The security of a protocol is defined by means of an ideal protocol that
carries out the desired task. In the ideal protocol, all parties send their inputs
to an ideal functionality F for the task. F locally computes the outputs of the
parties and provides each party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an environ-
ment Z in a real execution of ϕ against that of Z in the ideal protocol defined in
Fϕ. Z chooses the inputs of the parties and collects their outputs. In the real
world, Z can communicate freely with an adversary A who controls both the
network and any corrupt parties. In the ideal world, Z interacts with dummy
parties, who simply relay inputs and outputs between Z and Fϕ, and a simulator
S. We say that a protocol ϕ securely realizes Fϕ if Z cannot distinguish the real
world from the ideal world, i.e., Z cannot distinguish whether it is interacting
with A and parties running protocol ϕ or with S and dummy parties relaying to
Fϕ.

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed
to invoke the ideal functionality G. Therefore, for any protocol ψ that securely
realizes G, the composed protocol ϕψ, which is obtained by replacing each

invocation of an instance of G with an invocation of an instance of ψ, securely
realizes F .

In the ideal functionalities described in this paper, we consider static corrup-
tions. When describing ideal functionalities, we use the following conventions as
in [10].

Interface Naming Convention. An ideal functionality can be invoked by
using one or more interfaces. The name of a message in an interface consists
of three fields separated by dots, e.g., ud.read.ini in FUD in §3. The first field
indicates the name of the functionality and is the same in all interfaces of the
functionality. This field is useful for distinguishing between invocations of
different functionalities in a hybrid protocol that uses two or more different
functionalities. The second field indicates the kind of action performed by
the functionality and is the same in all messages that the functionality
exchanges within the same interface. The third field distinguishes between
the messages that belong to the same interface, and can take the following
different values. A message ud.read.ini is the incoming message received by
the functionality, i.e., the message through which the interface is invoked. A
message ud.read.end is the outgoing message sent by the functionality, i.e., the
message that ends the execution of the interface. The message ud.read.sim is
used by the functionality to send a message to S, and the message ud.read.rep
is used to receive a message from S.

Network vs local communication. The identity of an interactive Turing ma-
chine instance (ITI) consists of a party identifier pid and a session identifier
sid . A set of parties in an execution of a system of interactive Turing machines
is a protocol instance if they have the same session identifier sid . ITIs can
pass direct inputs to and outputs from “local” ITIs that have the same pid .
An ideal functionality F has pid = ⊥ and is considered local to all parties.
An instance of F with the session identifier sid only accepts inputs from
and passes outputs to machines with the same session identifier sid . Some
functionalities require the session identifier to have some structure. Those
functionalities check whether the session identifier possesses the required
structure in the first message that invokes the functionality. For the subse-
quent messages, the functionality implicitly checks that the session identifier
equals the session identifier used in the first message. Communication between
ITIs with different party identifiers must take place over the network. The
network is controlled by A, meaning that he can arbitrarily delay, modify,
drop, or insert messages.

Query identifiers. Some interfaces in a functionality can be invoked more
than once. When the functionality sends a message ud.read.sim to S in
such an interface, a query identifier qid is included in the message. The
query identifier must also be included in the response ud.read.rep sent by S.
The query identifier is used to identify the message ud.read.sim to which S
replies with a message ud.read.rep. We note that, typically, S in the security
proof may not be able to provide an immediate answer to the functionality
after receiving a message ud.read.sim. The reason is that S typically needs

to interact with the copy of A it runs in order to produce the message
ud.read.rep, but A may not provide the desired answer or may provide a
delayed answer. In such cases, when the functionality sends more than one
message ud.read.sim to S, S may provide delayed replies, and the order of
those replies may not follow the order of the messages received.

Aborts. When an ideal functionality F aborts after being activated with a mes-
sage sent by a party, we mean that F halts the execution of its program and
sends a special abortion message to the party that invoked the functionality.
When an ideal functionality F aborts after being activated with a message
sent by S, we mean that F halts the execution of its program and sends a
special abortion message to the party that receives the outgoing message
from F after F is activated by S.

B Security Definitions of the Building Blocks

Security of Non-Hiding Vector Commitments. A non-hiding VC scheme must be
correct and binding [15].

Correctness. The correctness property requires that for par ← VC.Setup(1k, `),
x← (x[1], . . . ,x[n]) ∈ Mn, com ← VC.Commit(par ,x), i← [1, n] and w ←
VC.Prove(par , i,x), VC.Verify(par , com,x[i], i,w) outputs 1 with probability
1.

Binding. The binding property requires that no adversary can output a vector
commitment com, a position i ∈ [1, `], two values x and x′ and two respective
witnesses w and w ′ such that VC.Verify accepts both, i.e., for ` polynomial
in k:

Pr

par ← VC.Setup(1k, `); (com, i, x, x′,w ,w ′)← A(par) :
1 = VC.Verify(par , com, x, i,w) ∧ x 6= x′ ∧
1 = VC.Verify(par , com, x′, i,w ′) ∧ i ∈ [1, `] ∧ x, x′ ∈M

 ≤ ε(k) .

Description of FCRS.Setup
CRS . The functionality FCRS.Setup

CRS is parameterized by a ppt

algorithm CRS.Setup. FCRS.Setup
CRS interacts with any parties P that obtain the

common reference string:

1. On input (crs.get.ini, sid) from any party P:

– If (sid , crs) is not stored, run crs ← CRS.Setup and store (sid , crs).

– Create a fresh qid and store (qid ,P).

– Send (crs.get.sim, sid , qid , crs) to S.

S. On input (crs.get.rep, sid , qid) from the simulator S:

– Abort if (qid ,P) is not stored.

– Delete the record (qid ,P).

– Send (crs.get.end, sid , crs) to P.

Description of FAUT. FAUT is parameterized by a message space M.

1. On input (aut.send.ini, sid ,m) from a party T :

– Abort if sid 6= (T ,R, sid ′) or if m /∈M.

– Create a fresh qid and store (qid ,R,m).

– Send (aut.send.sim, sid , qid ,m) to S.

S. On input (aut.send.rep, sid , qid) from S:

– Abort if (qid ,R,m) is not stored.

– Delete the record (qid ,R,m).

– Send (aut.send.end, sid ,m) to R.

Description of FR
ZK. FR

ZK is parameterized by a description of a relation R. FR
ZK

interacts with a prover P and a verifier V.

1. On input (zk.prove.ini, sid ,wit , ins) from P:

– Abort if sid 6= (P,V, sid ′) or if (wit , ins) /∈ R.

– Create a fresh qid and store (qid , ins).

– Send (zk.prove.sim, sid , qid , ins) to S.

S. On input (zk.prove.rep, sid , qid) from S:

– Abort if (qid , ins) is not stored.

– Parse sid as (P,V, sid ′).

– Delete the record (qid , ins).

– Send (zk.prove.end, sid , ins) to V.

C Security Analysis of Construction ΠUD

To prove that ΠUD securely realizes FUD, we must show that for any environment
Z and any adversary A there exists a simulator S such that Z cannot distinguish
whether it is interacting with A and the protocol in the real world or with S and
FUD. S thereby plays the role of all honest parties in the real world and interacts
with FUD for all corrupt parties in the ideal world.

S runs copies of the functionalities FVC.Setup
CRS , FAUT and FR

ZK. In the descrip-
tions of our simulators below, for brevity, we omit part of the communication
between S and A. Whenever a copy of any of those functionalities sends a message
(∗. ∗ .sim) to S, S implicitly forwards that message to A and runs again a copy of
that functionality on input the response provided by A. When any of the copies
of those functionalities aborts, S implicitly forwards the abortion message to A
if the functionality sends the abortion message to a corrupt party.

In Section C.1, we analyze the security of ΠUD when R is corrupt. In Sec-
tion C.2, we analyze the security of ΠUD when U is corrupt.

C.1 Security Analysis of ΠUD when R is Corrupt

We describe the simulator S for the case in which R is corrupt.

Initialization of S. S sets cu ← 0. S runs the crs.get interface of an instance
of FVC.Setup

CRS to get the parameters par .
Honest U sends an update. On input from functionality FUD the message

(ud.update.sim, sid , qid , (i, vui)∀i∈[1,N]), S sends the message (ud.update.rep,
sid , qid) to FUD. When FUD sends (ud.update.end, sid , (i, vui)∀i∈[1,N]), if (sid ,
par , com,x, cu) is not stored, S does the following:

– S initializes a counter cu ← 0.
– S initializes a vector x such that x[i] = vui for i ∈ [1,N].
– S runs com ← VC.Commit(par ,x) and stores (sid , par , com,x, cu).

Else:

– S sets cu ′ ← cu + 1, sets x′ ← x and com ′ ← com.
– For all i ∈ [1,N] such that vui 6= ⊥, S computes x′[i] ← vui and com ′

← VC.ComUpd(par , com ′, i,x[i], vui).
– S replaces the stored tuple (sid , par , com,x, cu) by (sid , par , com ′,x′,

cu ′).

S uses the aut.send interface of FAUT to send 〈(i, vui)∀i∈[1,N], cu ′〉 to A.
A requests and receives par . When A invokes the crs.get interface, S runs a

copy of FVC.Setup
CRS on that input to send par to A.

A sends a proof. When A invokes the zk.prove interface on input the wit-
ness wit and the instance ins, S runs a copy of FR

ZK on that input. Then
S parses ins as (par ′, com ′, parcom, com ′i , comr ′i , cr) and wit as (wi, i, openi ,
vri , openri). S sets comi ← (com ′i , parcom,COM.Verify) and comri ← (comr ′i ,
parcom,COM.Verify). The simulator S sends the message (ud.read.ini, sid , i,
vri , comi , openi , comri , openri) to the functionality FUD. When the function-
ality FUD sends the message (ud.read.sim, sid , qid , comi , comri), S does the
following:

– S retrieves the stored tuple (sid , par , com,x, cu). If cr 6= cu, or if par ′ 6=
par , or if com ′ 6= com, S sends FUD a message that makes FUD abort.

– Else, if x[i] 6= vri , S outputs failure.
– Else, S sends (ud.read.rep, sid , qid) to FUD.

Theorem 2. When R is corrupt, ΠUD securely realizes FUD in the (FVC.Setup
CRS ,

FAUT,FR
ZK)-hybrid model if the NHVC scheme is binding.

Proof of Theorem 2. We show by means of a series of hybrid games that the
environment Z cannot distinguish the real-world protocol from the ideal-world
protocol with non-negligible probability. We denote by Pr [Game i] the proba-
bility that the environment distinguishes Game i from the real-world protocol.

Game 0: This game corresponds to the execution of the real-world protocol.
Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that Game 1 runs an initialization
phase to set a counter cu and the parameters par . Game 1 stores and
updates a tuple (sid , par , com,x, cu). These changes do not alter the view of
the environment. Therefore, |Pr [Game 1]− Pr [Game 0]| = 0.

Game 2: Game 2 follows Game 1, except that, when the adversary sends a
valid proof with witness wit and instance ins, Game 2 outputs failure if
the values i and vri in the witness are such that x[i] 6= vri , where x[i] is in
the stored tuple (sid , par , com,x, cu). The probability that Game 2 outputs
failure is bound by the following claim.

Theorem 3. Under the binding property of the NHVC scheme, we have that
|Pr [Game 2]− Pr [Game 1]| ≤ Advbin−nhvcA .

Proof of Theorem 3. We construct an algorithm B that, given an adversary
that makes Game 2 fail with non-negligible probability, breaks the binding
property of the NHVC scheme with non-negligible probability. B behaves as
Game 2 with the following modifications:
– When the challenger sends the parameters par , B stores par as common

reference string in the copy of FVC.Setup
CRS .

– When the adversary sends a valid proof with witness wit = (wi, i, openi ,
vri , openri) and instance ins = (par , com, parcom, com ′i , comr ′i , cr) such
that the values i and vri in the witness fulfill x[i] 6= vri , where x[i] is in
the stored tuple (sid , par , com,x, cu), B runs w ′i ← VC.Prove(par , i,x)
and sends (com, i, vri ,x[i],wi,w

′
i) to the challenger.

This concludes the proof of Theorem 3.

The distribution of Game 2 is identical to our simulation. This concludes the
proof of Theorem 2.

C.2 Security Analysis of Construction ΠUD when U is Corrupt

We describe the simulator S for the case in which U is corrupt.

Initialization of S. S sets cr ← 0. S runs the crs.get interface of an instance
of FVC.Setup

CRS to get the parameters par .
A requests and receives par . S proceeds as in the case where R is corrupt.
A sends update. When A invokes the aut.send interface on input the message
〈(i, vui)∀i∈[1,N], cu ′〉, S runs a copy of FAUT on that input. If (sid , par , com,
x, cr) is not stored.

– S initializes a counter cr ← 0.
– S initializes a vector x such that x[i] = vui for i = [1,N].
– S runs com ← VC.Commit(par ,x), and stores (sid , par , com,x, cr).

Else:
– S sends an abortion message if cu ′ 6= cr + 1, or if, for all i /∈ [1,N],

vui /∈ Uv.
– Otherwise S sets x′ ← x and com ′ ← com. For all i ∈ [1,N] such that

vui 6= ⊥, S computes x′[i] ← vui and com ′ ← VC.ComUpd(par , com ′, i,
x[i], vui).

– S replaces the stored tuple (sid , par , com,x, cr) by (sid , par , com ′,x′,
cu ′).

S sends (ud.update.ini, sid , (i, vui)∀i∈[1,N]) to FUD. When FUD sends the
message (ud.update.sim, sid , qid , (i, vui)∀i∈[1,N]), S sends (ud.update.rep, sid ,
qid) to FUD.

Honest R sends a proof. On input from FUD the message (ud.read.sim, sid ,
qid , comi , comri), S sends (ud.read.rep, sid , qid) to FUD and receives the mes-
sage (ud.read.end, sid , comi , comri) from FUD. S does the following:
– S retrieves the stored tuple (sid , par , com,x, cr).
– S parses comi as (com ′i , parcom,COM.Verify).
– S parses comri as (comr ′i , parcom,COM.Verify).
– S sets ins ← (par , com, parcom, com ′i , comr ′i , cr).
– S sets the message corresponding to the zk.prove interface of FR

ZK to send
ins to A. Note that S does not know the witness, so it does no run a
copy of the functionality. Instead, S sets the message as if it was sent by
a copy of FR

ZK.

Theorem 4. When U is corrupt, ΠUD securely realizes FUD in the (FVC.Setup
CRS ,

FAUT,FR
ZK)-hybrid model.

Proof of Theorem 4. The only difference between the real world protocol and S
is that S does not run FR

ZK because S does not know the witness of the proof.
Because FR

ZK does not leak the witness to the adversary, this change does not
alter the view of the environment.

D Security Analysis of the DHE Non-Hiding VC Scheme

Theorem 5. The NHVC scheme is correct and binding under the `-DHE as-
sumption.

Proof. Correctness can be checked as follows:

e(com, g̃i)/e(w , g̃) =

=
e(g

∑n
j=1 x[j](α`+1−j), g̃(αi))

e(g(
∑n

j=1,j 6=i x[j](α
`+1−j+i)), g̃)

=
e(g(

∑n
j=1 x[j](α`+1−j+i), g̃)

e(g(
∑n

j=1,j 6=i x[j](α
`+1−j+i)), g̃)

= e(g , g̃)x[i](α
`+1)

= e(g1, g̃`)
x[i] .

We show that this NHVC scheme fulfills the binding property under the
`-DHE assumption. Given an adversary A that breaks the binding property
with non-negligible probability ν, we construct an algorithm T that breaks
the `-DHE assumption with non-negligible probability ν. First, T receives an

instance (e,G, G̃,Gt, p, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) of the `-DHE assump-
tion. T sets par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) and sends
par to A. A returns (com, i, x, x′,w ,w ′) such that VC.Verify(par , com, x, i,w)
= 1, VC.Verify(par , com, x′, i,w ′) = 1, i ∈ [1, `], x, x′ ∈ M, and x 6= x′. T
computes g`+1 as follows:

e(w , g̃)e(g1, g̃`)
x = e(w ′, g̃)e(g1, g̃`)

x′

e(w/w ′, g̃) = e(g1, g̃`)
x′−x

e((w/w ′)1/(x
′−x), g̃) = e(g1, g̃`)

e((w/w ′)1/(x
′−x), g̃) = e(g`+1, g̃) .

The last equation implies that g`+1 = (w/w ′)1/(x
′−x). T returns (w/w ′)1/(x

′−x)

as a solution for the `-DHE problem.

	UC Updatable Databases and Applications

