[en] This article explores the application of evolutionary algorithms and agent-oriented programming to solve the problem of searching and monitoring objectives through a fleet of unmanned aerial vehicles. The subproblem of static off-line planning is studied to find initial flight plans for each vehicle in the fleet, using evolutionary algorithms to achieve compromise values between the size of the explored area, the proximity of the vehicles, and the monitoring of points of interest defined in the area. The results obtained in the experimental analysis on representative instances of the surveillance problem indicate that the proposed techniques are capable of computing effective flight plans.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Gaudín, Américo
Madruga, Gabriel
Rodríguez, Carlos
Iturriaga, Santiago
Nesmachnow, Sergio
Paz, Claudio
DANOY, Grégoire ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
BOUVRY, Pascal ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Crespo-Mariño, Juan Luis
Meneses-Rojas, Esteban
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Autonomous Flight of Unmanned Aerial Vehicles Using Evolutionary Algorithms
Date de publication/diffusion :
2020
Nom de la manifestation :
Latin American High Performance Computing Conference (CARLA 2019)
Date de la manifestation :
from 25-09-2019 to 27-09-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
High Performance Computing
Maison d'édition :
Springer International Publishing, Cham, Inconnu/non spécifié
Cárdenas, A.F., Karplus, W.J.: PDEL-a language for partial differential equations. Commun. ACM 13(3), 184–191 (1970). https://doi.org/10.1145/362052.362059
Cook Jr., G.O.: ALPAL: a tool for the development of large-scale simulation codes, Lawrence Livermore National Lab., C.U. (1988)
van Engelen, R., Wolters, L., Cats, G.: CTADEL: a generator of multi-platform high performance codes for PDE-based scientific applications. In: Proceedings of the 10th International Conference on Supercomputing-ICS 1996, pp. 86–93. ACM Press, New York (2003). https://doi.org/10.1145/237578.237589
Almog, M., Korngreen, A.: Is realistic neuronal modeling realistic? J. Neurophysiol. 116(5), 2180–2209 (2016)
Almog, M., Korngreen, A.: Is realistic neuronal modeling realistic? J. Neurophysiol. 116(5), 2180–2209 (2016)
Almog, M., Korngreen, A.: Is realistic neuronal modeling realistic? J. Neurophysiol. 116(5), 2180–2209 (2016)
Louboutin, M., et al.: Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration. Geosci. Model Dev. 12(3), 1165–1187 (2019). https://doi.org/10.5194/gmd-12-1165-2019
Almog, M., Korngreen, A.: Is realistic neuronal modeling realistic? J. Neurophysiol. 116(5), 2180–2209 (2016)
Membarth, R., Hannig, F., Teich, J., Kostler, H.: Towards domain-specific computing for stencil codes in HPC. In: Proceedings-2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC 2012, pp. 1133–1138. IEEE, November 2012. https://doi.org/10.1109/SC.Companion.2012.136
Mojica, O.F., Kukreja, N.: Towards automatically building starting models for full-waveform inversion using global optimization methods: a PSO approach via DEAP + Devito, May 2019
Almog, M., Korngreen, A.: Is realistic neuronal modeling realistic? J. Neurophysiol. 116(5), 2180–2209 (2016)
Almog, M., Korngreen, A.: Is realistic neuronal modeling realistic? J. Neurophysiol. 116(5), 2180–2209 (2016)
Witte, P.A., et al.: A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia. Geophysics 84(3), F57–F71 (2019). https://doi.org/10.1190/geo2018-0174.1
Yount, C., Tobin, J., Breuer, A., Duran, A.: YASK-yet another stencil kernel: a framework for HPC stencil code-generation and tuning. In: 2016 Sixth International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC), pp. 30–39. IEEE, November 2017. https://doi.org/10.1109/WOLFHPC.2016.08
Zhang, Y., Mueller, F.: Auto-generation and auto-tuning of 3D stencil codes on GPU clusters. In: Proceedings of the Tenth International Symposium on Code Generation and Optimization-CHO 2012, p. 155. ACM Press, New York (2012). https://doi.org/10.1145/2259016.2259037