Article (Scientific journals)
Removing the saturation assumption in Bank-Weiser error estimator analysis in dimension three
BULLE, Raphaël; Chouly, Franz; HALE, Jack et al.
2020In Applied Mathematics Letters, 107, p. 106429
Peer Reviewed verified by ORBi
 

Files


Full Text
bulle-et-al-2020.pdf
Author postprint (650.91 kB)
Submitted version
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
finite element methods; a posteriori error estimation; saturation assumption; Bank-Weiserestimator; residual estimator
Abstract :
[en] We provide a new argument proving the reliability of the Bank-Weiser estimator for Lagrange piecewise linear finite elements in both dimension two and three. The extension to dimension three constitutes the main novelty of our study. In addition, we present a numerical comparison of the Bank-Weiser and residual estimators for a three-dimensional test case.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Mathematics
Author, co-author :
BULLE, Raphaël ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Chouly, Franz
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Lozinski, Alexei
External co-authors :
yes
Language :
English
Title :
Removing the saturation assumption in Bank-Weiser error estimator analysis in dimension three
Publication date :
September 2020
Journal title :
Applied Mathematics Letters
ISSN :
0893-9659
Publisher :
Elsevier, Oxford, United Kingdom
Volume :
107
Pages :
106429
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
European Projects :
H2020 - 811099 - DRIVEN - Increasing the scientific excellence and innovation capacity in Data-Driven Simulation of the University of Luxembourg
Name of the research project :
ASSIST
Funders :
Unilu - University of Luxembourg
CE - Commission Européenne
European Union
Available on ORBilu :
since 18 February 2020

Statistics


Number of views
219 (49 by Unilu)
Number of downloads
122 (25 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
2
WoS citations
 
1

Bibliography


Similar publications



Contact ORBilu