Article (Périodiques scientifiques)
Taylor-Series Expansion Based Numerical Methods: A Primer, Performance Benchmarking and New Approaches for Problems with Non-smooth Solutions
JACQUEMIN, Thibault Augustin Marie; TOMAR, Satyendra; AGATHOS, Konstantinos et al.
2019In Archives of Computational Methods in Engineering
Peer reviewed
 

Documents


Texte intégral
Taylor-Series Expansion Based Numerical Methods A Primer, Performance Benchmarking and New Approaches for Problems with Non-smooth Solutions.pdf
Postprint Éditeur (12.62 MB)
Demander un accès
Annexes
Manuscript.zip
(3.46 MB)
LaTex Source FIles
Demander un accès
CollocationCode_v1.0.8.zip
(90.59 kB)
Code
Demander un accès
1. Parametric Study.zip
(364.92 MB)
Analyses Files Part1
Demander un accès
2. Improvement Methods.zip
(268.94 MB)
Analyses Files Part2
Demander un accès
3. Benchmarking.zip
(151.55 MB)
Analyses Files Part3
Demander un accès
4. 3D Problems.zip
(233.59 MB)
Analyses Files Part4
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Collocation method; Non-smooth problems; Singularities; Discontinuities; Generalized finite difference; Discretization-corrected particle strength exchange; Linear elasticity; Voronoi diagrams; Stabilization; Visibility criterion; Diffraction criterion; L-shape; Fichera’s corner; Comparison and performance study; Verification; Benchmarking
Résumé :
[en] We provide a primer to numerical methods based on Taylor series expansions such as generalized finite difference methods and collocation methods. We provide a detailed benchmarking strategy for these methods as well as all data files including input files, boundary conditions, point distribution and solution fields, so as to facilitate future benchmarking of new methods. We review traditional methods and recent ones which appeared in the last decade. We aim to help newcomers to the field understand the main characteristics of these methods and to provide sufficient information to both simplify implementation and benchmarking of new methods. Some of the examples are chosen within a subset of problems where collocation is traditionally known to perform sub-par, namely when the solution sought is non-smooth, i.e. contains discontinuities, singularities or sharp gradients. For such problems and other simpler ones with smooth solutions, we study in depth the influence of the weight function, correction function, and the number of nodes in a given support. We also propose new stabilization approaches to improve the accuracy of the numerical methods. In particular, we experiment with the use of a Voronoi diagram for weight computation, collocation method stabilization approaches, and support node selection for problems with singular solutions. With an appropriate selection of the above-mentioned parameters, the resulting collocation methods are compared to the moving least-squares method (and variations thereof), the radial basis function finite difference method and the finite element method. Extensive tests involving two and three dimensional problems indicate that the methods perform well in terms of efficiency (accuracy versus computational time), even for non-smooth solutions.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
JACQUEMIN, Thibault Augustin Marie ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
TOMAR, Satyendra ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
AGATHOS, Konstantinos ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Mohseni-Mofidi, Shoya;  Fraunhofer-Institute for Mechanics of Materials IWM, Freiburg, Germany
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; China Medical University Hospital, China Medical University, Taichung, Taiwan > Department of Medical Research ; Asia University, Taichung, Taiwan > Department of Computer Science and Information Engineering
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Taylor-Series Expansion Based Numerical Methods: A Primer, Performance Benchmarking and New Approaches for Problems with Non-smooth Solutions
Date de publication/diffusion :
30 août 2019
Titre du périodique :
Archives of Computational Methods in Engineering
ISSN :
1134-3060
Maison d'édition :
International Center for Numerical Methods in Engineering, Barcelona, Espagne
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR10318764 - Multi-analysis Of Fretting Fatigue Using Physical And Virtual Experiments, 2015 (01/07/2016-30/06/2019) - Stéphane Bordas
Disponible sur ORBilu :
depuis le 23 janvier 2020

Statistiques


Nombre de vues
241 (dont 20 Unilu)
Nombre de téléchargements
3 (dont 1 Unilu)

citations Scopus®
 
36
citations Scopus®
sans auto-citations
30
OpenCitations
 
14
citations OpenAlex
 
32
citations WoS
 
37

Bibliographie


Publications similaires



Contacter ORBilu