Article (Périodiques scientifiques)
Model order reduction accelerated Monte Carlo stochastic isogeometric method for the analysis of structures with high-dimensional and independent material uncertainties
DING, Chensen; Deokar, Rohit R.; Ding, Yanjun et al.
2019In Computer Methods in Applied Mechanics and Engineering, 349, p. 266-284
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Model order reduction accelerated Monte Carlo stochastic isogeometric method for the analysis of structures with high-dimensional and independent material uncertainties.pdf
Postprint Éditeur (1.44 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Stochastic isogeometric analysis; High-dimensional and independent material uncertainties; Model order reduction via proper orthogonal decomposition; Monte Carlo simulation (MCS)
Résumé :
[en] Structural stochastic analysis is vital to engineering. However, current material related uncertainty methods are mostly limited to low dimension, and they mostly remain unable to account for spatially uncorrelated material uncertainties. They are not representative of realistic and practical engineering situations. In particular, it is more serious for composite structures comprised of dissimilar materials. Therefore, we propose a novel model order reduction via proper orthogonal decomposition accelerated Monte Carlo stochastic isogeometric method (IGA-POD-MCS) for stochastic analysis of exactly represented (composite) structures. This approach particularly enables high-dimensional material uncertainties wherein the characteristics of each element are independent. And the novelties include: (1) the structural geometry is exactly modeled thanks to isogeometric analysis (IGA), as well as providing more accurate deterministic and stochastic solutions, (2) we innovatively consider high-dimensional and independent material uncertainties by separating the stochastic mesh from the IGA mesh, and modeling different stochastic elements to have different (independent) uncertainty behaviors, (3) the classical Monte Carlo simulation (MCS) is employed to universally solve the high-dimensional uncertainty problem. However, to circumvent its computational expense, we employ model order reduction via proper orthogonal decomposition (POD) into the IGA coupled MCS stochastic analysis. In particular, we observe that this work decouples all IGA elements and hence permits independent uncertainty models easily, thereby the engineering problem is modeled to be more realistic and authentic. Several illustrative numerical examples verify the proposed IGA-POD-MCS approach is effective and efficient; and the larger the scale of the problem is, the more advantageous the method will become.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DING, Chensen ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
Deokar, Rohit R.;  University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States > Department of Mechanical Engineering
Ding, Yanjun;  School of Basic Medical Sciences, Central South University, Changsha 410013, PR China > Department of Forensic Science
Li, Guangyao;  State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
Cui, Xiangyang;  State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
Tamma, Kumar K.;  University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States > Department of Mechanical Engineering
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan ; Institute of Mechanics and Advanced Materials, School of Engineering, Cardiff University, UK
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Model order reduction accelerated Monte Carlo stochastic isogeometric method for the analysis of structures with high-dimensional and independent material uncertainties
Date de publication/diffusion :
03 février 2019
Titre du périodique :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
349
Pagination :
266-284
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR12253887 - Intuitive Modelling And Simulation Platform, 2017 (01/09/2018-30/09/2021) - Stéphane Bordas
Disponible sur ORBilu :
depuis le 22 janvier 2020

Statistiques


Nombre de vues
153 (dont 5 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
45
citations Scopus®
sans auto-citations
35
OpenCitations
 
22
citations OpenAlex
 
43
citations WoS
 
43

Bibliographie


Publications similaires



Contacter ORBilu