Contribution à des ouvrages collectifs (Parties d’ouvrages)
Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis
OLIVARES PULIDO, German; TEFERLE, Felix Norman; HUNEGNAW, Addisu
2020In Montillet, Jean-Philippe; Bos, Machiel (Eds.) Geodetic Time Series Analysis in Earth Sciences
 

Documents


Texte intégral
chapter3.pdf
Preprint Auteur (2.43 MB)
Early version of the book chapter before submission
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Time Series Analysis; Stochastic Properties; Markov Chain Monte Carlo; Random Walk; Metropolis-Hasting; Parameter Estimation; Parameter Uncertainties; Geodesy; Earth Sciences
Résumé :
[en] The time evolution of geophysical phenomena can be characterised by stochastic time series. The stochastic nature of the signal stems from the geophysical phenomena involved and any noise, which may be due to, e.g., un-modelled effects or measurement errors. Until the 1990's, it was usually assumed that white noise could fully characterise this noise. However, this was demonstrated to be not the case and it was proven that this assumption leads to underestimated uncertainties of the geophysical parameters inferred from the geodetic time series. Therefore, in order to fully quantify all the uncertainties as robustly as possible, it is imperative to estimate not only the deterministic but also the stochastic parameters of the time series. In this regard, the Markov Chain Monte Carlo (MCMC) method can provide a sample of the distribution function of all parameters, including those regarding the noise, e.g., spectral index and amplitudes. After presenting the MCMC method and its implementation in our MCMC software we apply it to synthetic and real time series and perform a cross-evaluation using Maximum Likelihood Estimation (MLE) as implemented in the CATS software. Several examples as to how the MCMC method performs as a parameter estimation method for geodetic time series are given in this chapter. These include the applications to GPS position time series, superconducting gravity time series and monthly mean sea level (MSL) records, which all show very different stochastic properties. The impact of the estimated parameter uncertainties on sub-sequentially derived products is briefly demonstrated for the case of plate motion models. Finally, the MCMC results for weekly downsampled versions of the benchmark synthetic GNSS time series as provided in Chapter 2 are presented separately in an appendix.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Sciences de la terre & géographie physique
Auteur, co-auteur :
OLIVARES PULIDO, German ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; Spire Global ; Geoscience Australia > National Positioning Infrastructure
TEFERLE, Felix Norman  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
HUNEGNAW, Addisu  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis
Date de publication/diffusion :
2020
Titre de l'ouvrage principal :
Geodetic Time Series Analysis in Earth Sciences
Auteur, co-auteur :
Montillet, Jean-Philippe
Bos, Machiel
Maison d'édition :
Springer
Edition :
1st ed.
ISBN/EAN :
978-3-030-21718-1
Collection et n° de collection :
Springer Geophysics
Pagination :
53-138
Focus Area :
Computational Sciences
Projet FnR :
FNR12909050 - Advanced Asymmetry Tropospheric Products For Meteorology From Gnss And Sar Observations, 2018 (01/02/2019-31/07/2022) - Norman Teferle
Organisme subsidiant :
University of Luxembourg - UL
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 22 janvier 2020

Statistiques


Nombre de vues
186 (dont 13 Unilu)
Nombre de téléchargements
371 (dont 14 Unilu)

OpenCitations
 
2
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu