Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Leveraging Privileged Information to Limit Distraction in End-to-End Lane Following
ROBINET, François; Demeules, Antoine; FRANK, Raphaël et al.
2020In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)
Peer reviewed
 

Documents


Texte intégral
Leveraging-Privileged-Information-to-Limit-Distraction-in-End-to-End-Lane-Following.pdf
Postprint Éditeur (963.5 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
end-to-end steering; lane following; visualization; privileged information
Résumé :
[en] Convolutional Neural Networks have been successfully used to steer vehicles using only road-facing cameras. In this work, we investigate the use of Privileged Information for training an end-to-end lane following model. Starting from the prior assumption that such a model should spend a sizeable fraction of its focus on lane markings, we take advantage of lane geometry information available at training time to improve its performance. To this end, we constrain the class of learnable functions by imposing a prior stemming from a lane segmentation task. For each input frame, we compute the set of pixels that most contribute to the prediction of the model using the VisualBackProp method. These pixel-relevance heatmaps are then compared with ground truth lane segmentation masks. A Distraction Loss term is added to the objective to regularize the training process. We learn from real-world data collected using our experimental vehicle and compare the results to those obtained using the simple Mean Squared Error objective. We show that the presence of our regularizer benefits both the performance and the stability of the model across a variety of evaluation metrics. We use a pretrained lane segmentation model without fine-tuning to extract lane marking masks and show that valuable learning signals can be extracted even from imperfect privileged knowledge. This method can be implemented easily and very efficiently on top of an existing architecture, without requiring the addition of any trainable parameter.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ROBINET, François ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Demeules, Antoine
FRANK, Raphaël ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VARISTEAS, Georgios ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
HUNDT, Christian ;  NVIDIA AI Technology Center Luxembourg
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Leveraging Privileged Information to Limit Distraction in End-to-End Lane Following
Date de publication/diffusion :
10 janvier 2020
Nom de la manifestation :
2020 IEEE 17th Annual Consumer Communications & Networking Conference
Date de la manifestation :
10-13 January 2020
Sur invitation :
Oui
Titre du périodique :
2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)
ISSN :
2331-9860
Peer reviewed :
Peer reviewed
Projet FnR :
FNR13301060 - Machine Learning For Risk Assessment In Semi-autonomous Vehicles, 2018 (01/10/2018-31/08/2022) - François Robinet
Disponible sur ORBilu :
depuis le 21 janvier 2020

Statistiques


Nombre de vues
340 (dont 65 Unilu)
Nombre de téléchargements
16 (dont 14 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
0
OpenCitations
 
3
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu