Article (Périodiques scientifiques)
Calibrated Learning for Online Distributed Power Allocation in Small-Cell Networks
Zhang, Xinruo; Nakhai, Mohammad Reza; ZHENG, Gan et al.
2019In IEEE Transactions on Communications, 67 (11), p. 8124 - 8136
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Calibrated Learning - Journal.pdf
Postprint Éditeur (3.8 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Small cell; distributed power control; online learning; calibration
Résumé :
[en] This paper introduces a combined calibrated learning and bandit approach to online distributed power control in small cell networks operated under the same frequency bandwidth. Each small base station (SBS) is modelled as an intelligent agent who autonomously decides on its instantaneous transmit power level by predicting the transmitting policies of the other SBSs, namely the opponent SBSs, in the network, in real-time. The decision making process is based jointly on the past observations and the calibrated forecasts of the upcoming power allocation decisions of the opponent SBSs who inflict the dominant interferences on the agent. Furthermore, we integrate the proposed calibrated forecast process with a bandit policy to account for the wireless channel conditions unknown a priori , and develop an autonomous power allocation algorithm that is executable at individual SBSs to enhance the accuracy of the autonomous decision making. We evaluate the performance of the proposed algorithm in cases of maximizing the long-term sum-rate, the overall energy efficiency and the average minimum achievable data rate. Numerical simulation results demonstrate that the proposed design outperforms the benchmark scheme with limited amount of information exchange and rapidly approaches towards the optimal centralized solution for all case studies.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Zhang, Xinruo
Nakhai, Mohammad Reza
ZHENG, Gan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Lambotharan, Sangarapillai
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Calibrated Learning for Online Distributed Power Allocation in Small-Cell Networks
Date de publication/diffusion :
30 août 2019
Titre du périodique :
IEEE Transactions on Communications
ISSN :
0090-6778
eISSN :
1558-0857
Maison d'édition :
IEEE, Etats-Unis
Volume/Tome :
67
Fascicule/Saison :
11
Pagination :
8124 - 8136
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 09 décembre 2019

Statistiques


Nombre de vues
171 (dont 2 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
8
citations OpenAlex
 
10
citations WoS
 
9

Bibliographie


Publications similaires



Contacter ORBilu