Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A parallel multi-population biased random-key genetic algorithm for electric distribution network reconfiguration
DE FARIA JUNIOR, Haroldo; TESSARO LUNARDI, Willian; VOOS, Holger
2019In The Genetic and Evolutionary Computation Conference - GECCO'19
Peer reviewed
 

Documents


Texte intégral
GECCO19.pdf
Preprint Auteur (482.79 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Metaheuristics; Combinatorial Optimization; Parallel Computing; Genetic Algorithm
Résumé :
[en] This work presents a multi-population biased random-key genetic algorithm (BRKGA) for the electric distribution network reconfiguration problem (DNR). DNR belongs to the class of network design problems which include transportation problems, computer network restoration and telecommunication network design and can be used for loss minimization and load balancing, being an important tool for distribution network operators. A BRKGA is a class of genetic algorithms in which solutions are encoded as vectors of random keys, i.e. randomly generated real numbers from a uniform distribution in the interval [0, 1). A vector of random keys is translated into a solution of the optimization problem by a decoder. The decoder used generates only feasible solutions by using an efficient codification based upon the fundamentals of graph theory, restricting the search space. The parallelization is based on the single program multiple data paradigm and is executed on the cores of a multi-core processor. Time to target plots, which characterize the running times of stochastic algorithms for combinatorial optimization, are used to compare the performance of the serial and parallel algorithms. The proposed method has been tested on two standard distribution systems and the results show the effectiveness and performance of the parallel algorithm.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DE FARIA JUNIOR, Haroldo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
TESSARO LUNARDI, Willian ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A parallel multi-population biased random-key genetic algorithm for electric distribution network reconfiguration
Date de publication/diffusion :
2019
Nom de la manifestation :
The Genetic and Evolutionary Computation Conference - GECCO'19
Lieu de la manifestation :
Prague, République Tchèque
Date de la manifestation :
13/07/2019 to 17/07/2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
The Genetic and Evolutionary Computation Conference - GECCO'19
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 20 septembre 2019

Statistiques


Nombre de vues
212 (dont 14 Unilu)
Nombre de téléchargements
220 (dont 6 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu