STEEN, Alexander ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
BENZMÜLLER, Christoph ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
External co-authors :
yes
Language :
English
Title :
The Higher-Order Prover Leo-III (Extended Abstract)
Publication date :
2019
Event name :
KI 2019
Event place :
Kassel, Germany
Event date :
September 23-26, 2019
Audience :
International
Main work title :
{KI} 2019: Advances in Artificial Intelligence - 42nd German Conference on AI, Kassel, Germany, September 23-26, 2019, Proceedings
Andrews, P.B., Brown, C.E.: TPS: a hybrid automatic-interactive system for developing proofs. J. Appl. Log. 4(4), 367–395 (2006). https://doi.org/10.1016/j.jal. 2005.10.002
Benzmüller, C., Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2019). https://plato.stanford.edu/entries/type-theory-church/
Benzmüller, C., Kohlhase, M.: System description: LEO – a higher-order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 139–143. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054256
Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier, Amsterdam (2014). https://doi.org/10.1016/B978-0-444-51624-4.50005-8
Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., et al. (eds.) ECAI 2012. Frontiers in AI and Applications, vol. 242, pp. 163–168. IOS Press, Montpellier (2012). https://doi.org/10.3233/978-1-61499-098-7-163
Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010). https://doi.org/10.1093/jigpal/jzp080
Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015). https://doi.org/10.1007/s10817-015-9348-y
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development-Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science an EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5
Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)
Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 29
Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi. org/10.1007/978-3-642-14052-5 11
Brown, C., Gauthier, T., Kaliszyk, C., Sutcliffe, G., Urban, J.: GRUNGE: a grand unified ATP challenge. In: Fontaine, P. (ed.) Proceedings of the 27th International Conference on Automated Reasoning (2019, to appear). Preprint: arXiv:1903.02539 [cs.LO]
Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 11
Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing, Maun, Botswana, 7–12 May 2017, vol. 46, pp. 14–30. EasyChair (2017). https://doi.org/10.29007/jsb9
Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000). https://doi.org/10.1007/10722086 7
Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 1635, pp. 41–55 (2016). CEUR-WS.org
Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61– 75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 5
Steen, A.: Extensional paramodulation for higher-order logic and its effective implementation Leo-III, DISKI, vol. 345. Akademische Verlagsgesellschaft AKA GmbH, Berlin, September 2018. Dissertation, Freie Universität Berlin, Germany
Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108– 116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 8
Sutcliffe, G.: The TPTP problem library and associated infrastructure-from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)
Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010). https://doi. org/10.6092/issn.1972-5787/1710
Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator Met-TeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8 41