Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning
CHARLIER, Jérémy Henri J.; Ormazabal, Gaston; STATE, Radu et al.
2019In Proceedings of the Fourth Workshop on MIning DAta for financial applicationS (MIDAS 2019) co-located with the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019)
Peer reviewed
 

Documents


Texte intégral
ECMLPKDD_MQLV_2.pdf
Preprint Auteur (344.49 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Q-learning; Monte-Carlo; Payment Transactions
Résumé :
[en] Reinforcement learning has become one of the best approach to train a computer game emulator capable of human level performance. In a reinforcement learning approach, an optimal value function is learned across a set of actions, or decisions, that leads to a set of states giving different rewards, with the objective to maximize the overall reward. A policy assigns to each state-action pairs an expected return. We call an optimal policy a policy for which the value function is optimal. QLBS, Q-Learner in the Black-Scholes(-Merton) Worlds, applies the reinforcement learning concepts, and noticeably, the popular Q-learning algorithm, to the financial stochastic model of Black, Scholes and Merton. It is, however, specifically optimized for the geometric Brownian motion and the vanilla options. Its range of application is, therefore, limited to vanilla option pricing within the financial markets. We propose MQLV, Modified Q-Learner for the Vasicek model, a new reinforcement learning approach that determines the optimal policy of money management based on the aggregated financial transactions of the clients. It unlocks new frontiers to establish personalized credit card limits or bank loan applications, targeting the retail banking industry. MQLV extends the simulation to mean reverting stochastic diffusion processes and it uses a digital function, a Heaviside step function expressed in its discrete form, to estimate the probability of a future event such as a payment default. In our experiments, we first show the similarities between a set of historical financial transactions and Vasicek generated transactions and, then, we underline the potential of MQLV on generated Monte Carlo simulations. Finally, MQLV is the first Q-learning Vasicek-based methodology addressing transparent decision making processes in retail banking.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CHARLIER, Jérémy Henri J. ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Ormazabal, Gaston
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
HILGER, Jean ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning
Date de publication/diffusion :
septembre 2019
Nom de la manifestation :
Fourth Workshop on MIning DAta for financial applicationS (MIDAS 2019) co-located with the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD} 2019)
Organisateur de la manifestation :
ECML PKDD
Lieu de la manifestation :
Würzburg, Allemagne
Date de la manifestation :
from 16-09-2019 to 20-09-2019
Manifestation à portée :
International
Titre du périodique :
Proceedings of the Fourth Workshop on MIning DAta for financial applicationS (MIDAS 2019) co-located with the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019)
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 12 septembre 2019

Statistiques


Nombre de vues
198 (dont 5 Unilu)
Nombre de téléchargements
186 (dont 3 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu