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Abstract. Reinforcement learning has become one of the best approach
to train a computer game emulator capable of human level performance.
In a reinforcement learning approach, an optimal value function is learned
across a set of actions, or decisions, that leads to a set of states giving
different rewards, with the objective to maximize the overall reward. A
policy assigns to each state-action pairs an expected return. We call an
optimal policy a policy for which the value function is optimal. QLBS,
Q-Learner in the Black-Scholes(-Merton) Worlds, applies the reinforce-
ment learning concepts, and noticeably, the popular Q-learning algo-
rithm, to the financial stochastic model of Black, Scholes and Merton.
It is, however, specifically optimized for the geometric Brownian motion
and the vanilla options. Its range of application is, therefore, limited to
vanilla option pricing within the financial markets. We propose MQLV,
Modified Q-Learner for the Vasicek model, a new reinforcement learn-
ing approach that determines the optimal policy of money management
based on the aggregated financial transactions of the clients. It unlocks
new frontiers to establish personalized credit card limits or bank loan
applications, targeting the retail banking industry. MQLV extends the
simulation to mean reverting stochastic diffusion processes and it uses a
digital function, a Heaviside step function expressed in its discrete form,
to estimate the probability of a future event such as a payment default.
In our experiments, we first show the similarities between a set of histor-
ical financial transactions and Vasicek generated transactions and, then,
we underline the potential of MQLV on generated Monte Carlo simula-
tions. Finally, MQLV is the first Q-learning Vasicek-based methodology
addressing transparent decision making processes in retail banking.

Keywords: Q-Learning · Monte Carlo · Payment Transactions.

1 Introduction

A major goal of the reinforcement learning (RL) and Machine Learning (ML)
community is to build efficient representations of the current environment to
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solve complex tasks. In RL, an agent relies on multiple sensory inputs and past
experience to derive a set of plausible actions to solve a new situation [1]. While
the initial idea around RL is not new [2–4], significant progress has been achieved
recently by combining neural networks and Deep Learning (DL) with RL. The
progress of DL [5, 6] has allowed the development of a novel agent combining
RL with a class of deep artificial neural networks [1,7] resulting in Deep Q Net-
work (DQN). The Q refers to the Q-learning algorithm introduced in [8]. It is
an incremental method that successively improves its evaluations of the quality
of the state-action pairs. The DQN approach achieves human level performance
on Atari video games using unprocessed pixels as inputs. In [9], deep RL with
double Q-Learning was proposed to challenge the DQN approach while trying
to reduce the overestimation of the action values, a well-known drawback of the
Q-learning and DQN methodologies. The extension of the DQN approach from
discrete to continuous action domain, directly from the raw pixels to inputs, was
successfully achieved for various simulated tasks [10].

Nonetheless, most of the proposed models focused on gaming theory and com-
puter game simulation and very few to the financial world. In QLBS [11], a RL
approach is applied to the Black, Scholes and Merton financial framework for
derivatives [12,13], a cornerstone of the modern quantitative finance. In the BSM
model, the dynamic of a stock market is defined as following a Geometric Brow-
nian Motion (GBM) to estimate the price of a vanilla option on a stock [14].
A vanilla option is an option that gives the holder the right to buy or sell the
underlying asset, a stock, at maturity for a certain price, the strike price. QLBS
is one of the first approach to propose a complete RL framework for finance. As
mentioned by the author, a certain number of topics are, however, not covered
in the approach. For instance, it is specifically designed for vanilla options and it
fails to address any other type of financial applications. Additionally, the initial
generated paths rely on the popular GBM but there exist a significant number
of other popular stochastic models depending on the market dynamics [15].

In this work, we describe a RL approach tailored for personal recommendation
in retail banking regarding money management to be used for loan applications
or credit card limits. The method is part of a banking strategy trying to reduce
the customer churn in a context of a competitive retail banking market. We rely
on the Q-learning algorithm and on a mean reverting diffusion process to address
this topic. It leads ultimately to a fitted Q-iteration update and a model-free
and off-policy setting. The diffusion process reflects the time series observed in
retail banking such as transaction payments or credit card transactions. Such
data is, however, strictly confidential and protected by the regulators, and there-
fore, it cannot be released publicly. Furthermore, we introduce a new terminal
digital function, Π, defined as a Heaviside step function in its discrete form for
a discrete variable n ∈ R. The digital function is at the core of our approach for
retail banking since it can evaluate the future probability of an event including,
for instance, the future default probability of a client based on his spendings.
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Our method converges to an optimal policy, and to optimal sets of actions and
states, respectively the spendings and the available money. The retail banks can,
consequently, determine the optimal policy of money management based on the
aggregated financial transactions of the clients. The banks are able to compare
the difference between the MQLV’s optimal policy and the individual policy of
each client. It contributes to an unbiased decision making process while offering
transparency to the client. Our main contributions are summarized below:

– A new RL framework called MQLV, Modified Q-Learning for Vasicek, ex-
tending the initial QLBS framework [11]. MQLV uses the theoretical founda-
tion of RL learning and Q-Learning to build a financial RL framework based
on a mean reverting diffusion process, the Vasicek model [16], to simulate
data, in order to reach ultimately a model-free and off-policy RL setting.

– The definition of a digital function to estimate the future probability of an
event. The aim is to widen the application perspectives of MQLV by using a
characteristic terminal function that is usable for a decision making process
in retail banking such as the estimation of the default probability of a client.

– The first application of Q-learning to determine the clients’ optimal policy of
money management in retail banking. MQLV leverages the clients aggregated
financial transactions to define the optimal policy of money management,
targeting the risk estimation of bank loan applications or credit cards.

The paper is structured as follows. In section 2, we review QLBS and the Q-
Learning formulations derived by Halperin in [11] in the context of the Black,
Scholes and Merton model. In section 3, we describe MQLV according to the Q-
Learning algorithm that leads to a model-free and off-policy setting. We highlight
experimental results in section 4. We discuss related works in section 5 and we
conclude in section 6 by addressing promising directions for future work.

2 Background

We define At ∈ A the action taken at time t for a given state Xt ∈ X and the
immediate reward by Rt+1. The ongoing state is denoted by Xt ∈ X and the
stochastic diffusion process by St ∈ S at time t. The discount factor that trades
off the importance of immediate and later rewards is expressed by γ ∈ [0; 1].

We recall a policy is a mapping from states to probabilities of selecting each
possible action [17]. By following the notations of [11], the policy π such that

π : {0, . . . , T − 1} × X → A (1)

maps at time t the current state Xt = xt into the action at ∈ A.

at = π(t, xt) (2)
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The value of a state x under a policy π, denoted by vπ(x) when starting in x
and following π thereafter, is called the state-value function for policy π.

vπ = Eπ

[ ∞∑
k=0

γkRt+k+1|Xt = x

]
(3)

The action-value function, qπ(x, a) for policy π defines the value of taking action
a in state x under a policy π as the expected return starting from x, taking the
action a, and thereafter following policy π.

qπ(x, a) = Eπ

[ ∞∑
k=0

γkRt+k+1|Xt = x,At = a

]
(4)

The optimal policy, π∗t , is the policy that maximizes the state-value function.

π∗t (Xt) = arg max
π

V πt (Xt) (5)

The optimal state-value function, V ∗t , satisfies the Bellman optimality equation
such that

V ∗t (Xt) = Eπ
∗

t

[
Rt(Xt, ut = π∗t (Xt), Xt+1) + γV ∗t+1(Xt+1)

]
. (6)

The Bellman equation for the action-value function, the Q-function, is defined
as

Qπt (x, a) = Et [Rt(Xt, at, Xt+1)|Xt = x, at = a] + γEπt
[
V πt+1(Xt+1)|Xt = x

]
.
(7)

The optimal action-value function, Q∗t , is obtained for the optimal policy with

π∗t = arg max
π

Qπt (x, a). (8)

The optimal state-value and action-value functions are connected by the follow-
ing system of equations.{

V ∗t = maxaQ
∗(x, a)

Q∗t = Et [Rt(Xt, a,Xt+1)] + γEt
[
V ∗t+1(Xt+1|Xt = x)

] (9)

Therefore, we can obtain the Bellman optimality equation.

Q∗t (x, a) = Et
[
Rt(Xt, at, Xt+1) + γ max

at+1∈A
Q∗t+1(Xt+1, at+1)|Xt = x, at = a

]
(10)

Using the Robbins-Monro update [18], the update rule for the optimal Q-function

with on-line Q-learning on the data point (X
(n)
t , a

(n)
t , R

(n)
t , X

(n)
t+1) is expressed

by the following equation with α a constant step-size parameter.
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Q∗,k+1
t (Xt, at) =(1− αk)Q∗,kt (Xt, at)+

αk
[
Rt(Xt, at, Xt+1) + γ max

at+1∈A
Q∗,kt+1(Xt+1, at+1)

]
(11)

3 Algorithm

We describe, in this section, how to derive a general recursive formulation for the
optimal action. It is equivalent to an optimal hedge under a financial framework
such as, for instance, portfolio or personal finance optimization. We additionally
present the formulation of the action-value function, the Q-function. Both the
optimal hedge and the Q-function follow the assumption of a continuous space
scenario generated by the Vasicek model with Monte Carlo simulation.

By relying on the financial framework established in [11], we consider a mean
reverting diffusion process, also known as the Vasicek model [16].

dSt = κ(b− St)dt+ σdBt (12)

The term κ is the speed reversion, b the long term mean level, σ the volatility
and Bt the Brownian motion. The solution of the stochastic equation is equal to

St = S0e
−κt + b(1− e−κt) + σe−κt

∫ t

0

eκsdBs. (13)

Therefore, we define a new time-uniform state variable, i.e. without a drift, as{
St = Xt + S0e

−κt + b(1− e−κt)
with Xt = σe−κt

∫ t
0
eκsdBs − [S0e

−κt + b(1− e−κt)]
. (14)

Instead of estimating the price of a vanilla option as proposed in [11], we are
interested to estimate the future probability of an event using the Q-learning
algorithm and a digital function. First, we define the terminal condition reflecting
that with the following equation

Q∗T (XT , aT = 0) = −ΠT − λV ar [ΠT (XT )] (15)

where ΠT is the digital function at time t = T defined such that

ΠT = 1ST≥K =

{
1 if ST ≥ K
0 otherwise

(16)

and the second term, λV ar [ΠT (XT )], is a regularization term with λ ∈ R+ � 0.
We use a backward loop to determine the value of Πt for t = T − 1, ..., 0.

Πt = γ (Πt+1 − at∆St) with ∆St = St+1 −
St
γ

= St+1 − er∆tSt (17)
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Following the definition of the equations (6) and (17), we express the one-step
time dependent random reward with respect to the cross-sectional information
Ft as follows.

Rt(Xt, at, Xt+1) = γat∆St(Xt, Xt+1)− λV ar [Πt|Ft]

with V ar [Πt|Ft] = γ2Et
[
Π̂2
t+1 − 2at∆ŜtΠ̂t+1 + a2t∆Ŝ

2
t

] (18)

The term ∆S̄t is defined such that ∆S̄t = 1
N∆S, ∆Ŝ = ∆S −∆S̄t and Π̂t+1 =

Πt+1−Π̄t+1 with Π̄t+1 = 1
NΠt+1. Because of the regularizer term, the expected

reward Rt is quadratic in at and has a finite solution. Therefore, we inject the
one-step time dependent random reward equation (18) into the Bellman opti-
mality equation (10) to obtain the following Q-learning update, Q∗, and the
optimal action, a∗, to be solved within a backward loop ∀t = T − 1, ..., 0.

Q∗t (Xt, at) = γEt
[
Q∗t+1(Xt+1, a

∗
t+1) + at∆St

]
− λV ar [Πt|Ft]

a∗t (Xt) = Et
[
∆ŜtΠ̂t+1 +

1

2λγ
∆St

] [
Et
[(
∆Ŝt

)2]]−1 (19)

We refer to [11] for further details about the analytical solution, a∗, of the
Q-learning update (19). Our approach uses the N Monte Carlo paths simultane-
ously to determine the optimal action a∗ and the optimal action-value function
Q∗ to learn the policy π∗. Thus, we do not need an explicit conditioning of Xt at
time t. We assume a set of basis function {Φn(x)} for which the optimal action
a∗t (Xt) and the optimal action-value function, Q∗t (Xt, a

∗
t ), can be expanded.

a∗t (Xt) =

M∑
n

φntΦn(Xt) and Q∗t (Xt, a
∗
t ) =

M∑
n

ωntΦn(Xt) (20)

The coefficients φ and ω are computed recursively backward in time ∀t = T −
1, . . . , 0. Subsequently, we define the minimization problem to evaluate φnt.

Gt(φ) =

N∑
k=1

− M∑
n

φntΦn(Xk
t )∆Skt + γλ

(
Πk
t+1 −

M∑
n

φntΦn(Xk
t )∆Ŝkt

)2

(21)

The equation (21) leads to the following set of linear equations ∀n = 1, . . . ,M .


A(t)
nm =

N∑
k=1

Φn(Xk
t )Φm(Xk

t )(∆Ŝtk)2

B(t)
n =

N∑
k=1

Φn(Xk
t )

[
Π̂k
t+1∆Ŝ

k
t +

1

2γλ
∆Skt

] with

M∑
m

A(t)
nmφmt = B(t)

n

(22)
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Therefore, the coefficients of the optimal action a∗t (Xt) is determined by

φ∗t = A−1t Bt. (23)

Hereinafter, we use Fitted Q Iteration (FQI) [19,20] to evaluate the coefficients
ω. The optimal action-value function, Q∗(Xt, at), is represented in its matrix
form according to the basis function expansion of the equation (20).

Q∗t (Xt, at) =

(
1, a,

1

2
a2t

)W11(t) W12(t) . . . W1M (t)
W21(t) W22(t) . . . W2M (t)
W31(t) W32(t) . . . W3M (t)


 Φ1(Xt)

...
ΦM (Xt)


=ATt WtΦ(Xt) = ATt UW (t,Xt)

(24)

Based on the least-square optimization problem, the coefficient Wt are deter-
mined using backpropagation ∀t = T − 1, ..., 0 as follows

Lt(Wt) =

N∑
k=1

(
Rt(Xt, at, Xt+1) + γ max

at+1∈A
Q∗t+1(Xt+1, at+1)−WtΨt(Xt, at)

)2

with WtΨ(Xt, at) + ε −→
ε→0

Rt(Xt, at, Xt+1) + γ max
at+1∈A

Q∗t+1(Xt+1, at+1)

(25)

for which we derive the following set of linear equations.


M (t)
n =

N∑
k=1

Ψn(Xk
t , a

k
t )

[
η

(
Rt(Xt, at, Xt+1) + γ max

at+1∈A
Q∗t+1(Xt+1, at+1)

)]
with η ∼ B(N, p)

(26)

The term B(N, p) represents the binomial distribution for n samples with prob-
ability p. It plays the role of a dropout function when evaluating the matrix Mt

to compensate the well-known drawback of the Q-learning algorithm that is the
overestimation of the Q-function values. We reach finally the definition of the
optimal weights to determine the optimal action a∗.

W ∗t = S−1t Mt (27)

The proposed model does not require any assumption on the dynamics of the
time series, neither transition probabilities nor policy or reward functions. It
is an off-policy model-free approach. The computation of the optimal policy,
the optimal action and the optimal Q-function that leads to the future event
probabilities is summed up in algorithm 1.
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Algorithm 1: Q-learning to evaluate the optimal policy of money management

Data: time series of maturity T, either from generated or true data

Result: optimal Q-function Q∗, optimal action a∗, value of digital function Π

1 begin

2 /*Condition at T*/

3 a∗T (XT ) = 0

4 QT (XT , aT ) = −ΠT = −1ST≥K using equation (16)

5 Q∗
T (XT , a

∗
T ) = QT (XT , aT )

6 /*Backward Loop*/

7 for t← T − 1 to 0 do

8 /*Evaluate the coefficients φ*/

9 compute At, Bt using equation (22)

10 φ∗
t ← A−1

t Bt

11 /*Evaluate the coefficients ω*/

12 compute St,Mt using equation (26)

13 W ∗
t ← S−1

t Mt

14 a∗t (Xt) =
∑M

n φ∗
ntΦn(Xt)

15 Q∗(Xt, at) = AT
t W

∗
t Φ(Xt)

16 /*Compute the digital function value to estimate the event probability at

t = 0*/

17 print(Π0 = mean(Q∗
0))

18 return

4 Experiments

We empirically evaluate the performance of MQLV. We initially highlight the
similarities between historical payment transactions and Vasicek generated trans-
actions. We then underline the MQLV’s capabilities to learn the optimal policy
of money management based on the estimation of future event probabilities in
comparison to the closed formula of [12,13], hereinafter denoted by BSM’s closed
formula. We rely on synthetic data sets because of the privacy and the confiden-
tiality issues of the retail banking data sets.

Data Availability and Data Description One of our contributions is to
bring a RL framework designed for retail banking. However, none of the data
sets can be released publicly because of the highly sensitive information they con-
tain. We therefore show the similarities between a small sample of anonymized
transactions and Vasicek generated transactions [16]. We then use the Vasicek
mean reverting stochastic diffusion process to generate larger synthetic data sets
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similar to the original retail banking data sets. The mean reverting dynamic is
particularly interesting since it reflects a wide range of retail banking transac-
tions including the credit card transactions, the savings history or the clients’
spendings. Three different data sets were generated to avoid any bias that could
have been introduced by using only one data set. We choose to differentiate the
number of Monte Carlo paths between the data sets to assess the influence of
the sampling size on the results. The first, second and third data sets contain
respectively 20,000, 30,000 and 40,000 paths. We release publicly the data sets4

to ensure the reproducibility of the experiments.

Experimental Setup and Code Availability In our experiments, we gen-
erate synthetic data sets using the Vasicek model with a parameter S0 = 1.0
corresponding to the value of the time series at t = 0, a maturity of six months
T = 0.5, a speed reversion a = 0.01, a long term mean b = 1 and a volatility
σ = 0.15. Because the choice of the parameters of the Vasicek model do not
have any influence on the results of the Q-learning approach, the numbers were
fixed such that any limitations of the methodology would be quickly observed.
The number of time steps is fixed equal to 5. We additionally use different strike
values for the experiments explicitly mentioned in the Results and Discussions
subsection. The simulations were performed on a computer with 16GB of RAM,
Intel i7 CPU and a Tesla K80 GPU accelerator. To ensure the reproducibility of
the experiments, the code is available at the following address4.

Results and Discussions about MQLV As aforementioned, we cannot re-
lease publicly an anonymized transactions data set because of privacy, confiden-
tiality and regulatory issues. We consequently highlight the similarities between
the dynamic of a small sample of anonymized transactions and Vasicek generated
transactions for one client [21] in figure 1. The financial transactions in retail
banking are periodic and often fluctuates around a long term mean, reflecting
the frequency and the amounts of the spendings habits of the clients. The akin
dynamic of the original and the generated transactions is highlighted by the
small RMSE of 0.03. We also performed a least square calibration of the Vasicek
parameters to assess the model’s plausibility. We can observe in table 1 that the
Vasicek parameters have the same magnitude and, therefore, it supports the hy-
pothesis that the Vasicek model could be used to generate synthetic transactions.

We present the core of our contribution in the following experiment. We aim at
learning the optimal policy of money management. It is particularly interesting
for bank loan applications where the differences between a client’s spendings
policy and the optimal policy can be compared. We show that MQLV is capable
of evaluating accurately the probability of a default event using a digital func-
tion which highlights the learning of the optimal policy of money management.
Effectively, if the MQLV’s learned policy is different than the optimal policy,
then the probabilities of default events are not accurate. In figure 2, the esti-

4 The code and the data sets are available at https://github.com/dagrate/MQLV.



10 J. Charlier et al.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Steps

0.94

0.96

0.98

1.00

1.02

1.04

Tr
an

sa
ct

io
n 

Pa
th

s

generated
original

Fig. 1. Samples of original and Vasicek
generated transactions for one client. The
two samples oscillate around a long term
mean of 1 and have a similar pattern,
highlighted by the small RMSE of 0.03
in table 1.

Table 1. RMSE error between the sam-
ples of original transactions and generated
Vasicek transactions of figure 1. We also
calibrated the Vasicek parameters accord-
ing to the original transactions to validate
the model’s plausibility.

Description Value

RMSE 0.0335
Vasicek speed reversion a 0.5444
Vasicek long term mean b 0.9001

Vasicek volatility σ 0.2185

mation of future event probabilities for different strike values is represented. We
rely on the BSM’s closed formula for the vanilla option pricing [12, 13] to ap-
proximate the digital function values [15]. We used, therefore, the BSM’s values
as reference values to cross-validate the MQLV’s values. MQLV achieves a close
representation of the event probabilities for the different strike values in figure
2. The curves of both the MQLV and the BSM’s approaches are similar with
a RMSE of 1.5016. This result highlights that the learned Q-learning policy of
MQLV is sufficiently close to the optimal policy to compute event probabilities
almost identical to the probabilities of the BSM’s formula approximation.

We gathered quantitative results in table 2 for a deeper analysis of the MQLV’s
results. The event probability values are listed for the three data sets. We chose a
set of parameters for the Vasicek model such that our configuration is free of any
time-dependency. We therefore expect a probability value of 50% at a threshold
of 1 because the standard deviation of the generated data sets is only induced
by the normal distribution standard deviation, used to simulate the Brownian
motion. Surprisingly, the MQLV values at a strike of 1 are closer to 50% than
the BSM’s values for all the data sets. We can conclude, subsequently, that, for
our configuration, MQLV is capable to learn the optimal policy of money man-
agement which is reflected by the accurate evaluation of the event probabilities.

We chose to generate three new data sets with new Vasicek parameters a and
σ to underline the potential of MQLV and the universality of the results. In
table 3, we computed the event probabilities for different strikes for the newly
generated data sets. The parameter b remains unchanged since we want to keep
a configuration free of any time-dependency. We notice that MQLV is capable
to estimate a probability of 50% for a strike of 1 which can only be obtained
if MQLV is able to learn the optimal policy. We also observe that the BSM’s
approximation does lead to a lower accuracy. We showed in this experiment that
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Fig. 2. Event probability values calculated by MQLV and BSM’s closed formula ap-
proximation for 40,000 Monte Carlo paths with Vasicek parameters a = 0.01, b = 1
and σ = 0.15. The BSM’s closed formula approximation values are used as reference
values. The event probabilities of MQLV are close to the BSM’s values with a total
RMSE of 1.502. It illustrates that MQLV is able to learn the optimal policy leading to
accurate event probabilities.

Table 2. Valuation differences of the digital values for event probabilities according to
different strikes between the BSM’s closed formula approximation and MQLV. Given
our time-uniform configuration, the event probability values should be close to 50% for
a strike value of 1. The MQLV values are close to the theoretical target of 50% at a
strike of 1 highlighting the MQLV’s capabilities to learn the optimal policy. The BSM’s
closed formula approximation slightly underestimates the probability values.

Data Number Strike BSM’s Approx. MQLV Absolute
Set of Paths Values Values (%) Values (%) Difference

1 20,000 0.92 76.810 77.098 0.288
1 20,000 0.98 55.447 57.920 2.473
1 20,000 1.00 47.867 50.235 2.368
1 20,000 1.02 40.509 42.865 2.356
2 30,000 0.92 76.810 76.953 0.143
2 30,000 0.98 55.447 57.760 2.313
2 30,000 1.00 47.867 50.043 2.176
2 30,000 1.02 40.509 42.744 2.235
3 40,000 0.92 76.810 77.047 0.237
3 40,000 0.98 55.447 57.491 2.044
3 40,000 1.00 47.867 49.924 2.057
3 40,000 1.02 40.509 42.713 2.204
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Table 3. Event probabilities for data sets generated with different Vasicek parameters
a and σ. The parameter b remains unchanged to keep a configuration free of any time-
dependency to facilitate the results explainability. We can deduce that MQLV is able to
learn the optimal policy because the MQLV’s probabilities are close to the theoretical
target of 50% at a strike of 1. MQLV is also more accurate than BSM’s formula.

Parameters Number Strike BSM’s App. MQLV Absolute
a; b;σ of Paths Values Values (%) Values (%) Difference

0.01; 1; 0.10 50,000 0.98 59.856 61.223 1.366
0.01; 1; 0.10 50,000 1.00 48.562 50.001 1.439
0.01; 1; 0.10 50,000 1.02 37.596 39.044 1.447
0.01; 1; 0.30 50,000 0.98 49.558 53.647 4.089
0.01; 1; 0.30 50,000 1.00 45.767 49.997 4.230
0.01; 1; 0.30 50,000 1.02 42.088 46.194 4.106
0.10; 1; 0.15 50,000 0.98 55.447 57.540 2.093
0.10; 1; 0.15 50,000 1.00 47.867 50.015 2.148
0.10; 1; 0.15 50,000 1.02 40.509 42.638 2.129
0.30; 1; 0.15 50,000 0.98 55.447 57.586 2.139
0.30; 1; 0.15 50,000 1.00 47.867 50.022 2.155
0.30; 1; 0.15 50,000 1.02 40.509 42.542 2.033

our model-free and off-policy RL approach, MQLV, is able to learn the optimal
policy reflected by the accurate probability values independently of the data sets
considered and of the Vasicek parameters.

Limitations of the BSM’s closed formula used for cross validation In
our experiments, we observed, surprisingly, that the BSM’s closed formula ap-
proximation underestimates the event probability values. The volatility is the
only parameter playing a significant role in the generation of the time series
and, therefore, the event probability should be equal to the mean of the distri-
bution used to generate the random numbers. The Brownian motion is simulated
with a standard normal distribution with a 0.5 mean. The BSM’s closed formula
did not, however, lead to a probability of 0.5 but to slightly smaller values be-
cause of the limit of their theoretical framework [12,13]. Hence, we observed that
MQLV was more accurate than the BSM’s closed formula in our configuration.

5 Related Work

The foundations of modern reinforcement learning described in [2,4] established
the theoretical framework to learn good policies for sequential decision problems
by proposing a formulation of cumulative future reward signal. The Q-learning
algorithm introduced in [3] is one of the cornerstone of all recent reinforcement
learning publications. However, the convergence of the Q-Learning algorithm
was solved several years later. It was shown that the Q-Learning algorithm with
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non-linear function approximators [22] with off-policy learning [23] could provoke
a divergence of the Q-network. Therefore, the reinforcement learning community
focused on linear function approximators [22] to ensure convergence.

The emergence of neural networks and deep learning [24] contributed to address
the use of reinforcement learning with neural networks. At an early stage, deep
auto-encoders were used to extract feature spaces to solve reinforcement learning
tasks [25]. Then, thanks to the release of the Atari 2600 emulator [26], a pub-
lic data set was available answering the needs of the RL community for larger
simulation. The Atari emulator allowed a proper performance benchmark of the
different reinforcement learning algorithms and offered the possibility to test var-
ious architectures. The Atari games were used to introduce the concept of deep
reinforcement learning [1, 7]. The authors used a convolutional neural network
trained with a variant of Q-learning to successfully learn control policies directly
from high dimensional sensory inputs. They reached human-level performance
on many of the Atari games. Shortly after, the deep reinforcement learning was
challenged by double Q-Learning within a deep reinforcement learning frame-
work [9]. The double Q-Learning algorithm was initially introduced in [19] in
a tabular setting. The double deep Q-Learning gave more accurate estimates
and lead to much higher scores than the one observed in [1, 7]. Consequently,
an ongoing work is to further improve the results of the double deep Q-learning
algorithms through different variants. In [27], the authors used a quantile re-
gression to approximate the full quantile function for the state-action return
distribution, leading to a large class of risk-sensitive policies. It allowed them to
further improve the scores on the Atari 2600 games simulator. Similarly, a new
algorithm, called C51, which applies the Bellman’s equation to the learning of
the approximate value distribution was designed in [28]. They showed state-of-
the-art results on the Atari 2600 emulator.

Other publications meanwhile focused on model-free policies and actor-critic
framework. Stochastic policies were trained in [29] with a replay buffer to avoid
divergence. It was showed in [30] that deterministic policy gradients (DPG) ex-
ist, even in a model-free environment. Subsequently, the DPG approach was ex-
tended in [31] using a deviator network. Continuous control policies were learned
using backpropagation introducing the Stochastic Value Gradient SVG(0) and
SVG(1) in [32]. Recently, Deep Deterministic Policy Gradient (DDPG) was pre-
sented in [10] to learn competitive policies using an actor-critic model-free algo-
rithm based on the DPG that operates over continuous action spaces.

6 Conclusion

We introduced Modified Q-Learning for Vasicek or MQLV, a new model-free
and off-policy reinforcement learning approach capable of evaluating an optimal
policy of money management based on the aggregated transactions of the clients.
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MQLV is part of a banking strategy that looks to minimize the customer churn by
including more transparency and more personalization in the decision process
related to bank loan applications or credit card limits. It relies on a digital
function to estimate the future probability of an event such as a payment default.
We discuss its relation with the Bellman optimality equation and the Q-learning
update. We conducted experiments on synthetic data sets because of the privacy
and confidentiality issues related to the retail banking data sets. The generated
data sets followed a mean reverting stochastic diffusion process, the Vasicek
model, simulating retail banking data sets such as transaction payments. Our
experiments showed the performance of MQLV with respect to the BSM’s closed
formula for vanilla options. We also highlighted that MQLV is able to determine
an optimal policy, an optimal Q-function, optimal actions and optimal states
reflected by accurate probabilities. Surprisingly, we observed that MQLV led to
more accurate event probabilities than the popular BSM’s formula.
Future work will address the creation of a fully anonymized data set illustrating
the retail banking daily transactions with a privacy, confidentiality and regula-
tory compliance. We will also evaluate the MQLV’s performance for data sets
that violate the Vasicek assumptions. We, furthermore, observed that the Q-
learning update could minor the real probability values for simulation involving
a small temporal discretization such as ∆t = 200. Preliminary results showed it
is provoked by the basis function approximator error. We will address this point
in future research. Finally, we will extend the Q-learning update to other scheme
for improved accuracy and incorporate a deep learning framework.
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