[en] In this paper we describe the class of idempotent n-ary uninorms
on a given chain.When the chain is finite, we axiomatize the latter
class by means of the following conditions: associativity, quasitriviality,
symmetry, and nondecreasing monotonicity. Also, we show that associativity
can be replaced with bisymmetry in this new axiomatization.
Disciplines :
Sciences informatiques Mathématiques
Auteur, co-auteur :
DEVILLET, Jimmy ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Kiss, Gergely
MARICHAL, Jean-Luc ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
On idempotent n-ary uninorms
Date de publication/diffusion :
24 juillet 2019
Nom de la manifestation :
16th International Conference on Modeling Decisions for Artificial Intelligence
Organisateur de la manifestation :
University of Milano-Bicocca
Lieu de la manifestation :
Milan, Italie
Date de la manifestation :
from 04-09-2019 to 06-09-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
Modeling Decisions for Artifical Intelligence
Editeur scientifique :
Torra, Vicenç
Narukawa, Yasuo
Pasi, Gabriella
Viviani, Marco
Maison d'édition :
Springer, Cham, Suisse
ISBN/EAN :
978-3-030-26772-8
Collection et n° de collection :
Series: Lecture Notes in Artificial Intelligence - Vol. 11676
Berg, S., Perlinger, T.: Single-peaked compatible preference profiles: some combinatorial results. Soc. Choice Welf. 27(1), 89–102 (2006)
Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34 (1948)
Black, D.: The Theory of Committees and Elections. Kluwer Academic Publishers, Dordrecht (1987)
Couceiro, M., Devillet, J., Marichal, J.-L.: Characterizations of idempotent discrete uninorms. Fuzzy Sets Syst. 334, 60–72 (2018)
De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)
Devillet, J., Kiss, G., Marichal, J.-L.: Characterizations of quasitrivial symmetric nondecreasing associative operations. Semigroup Forum 98(1), 154–171 (2019)
Devillet, J., Kiss, G., Marichal, J.-L.: Characterizations of idempotent n-ary uninorms. In: Proceedings of the 38th Linz Seminar on Fuzzy Set Theory (LINZ 2019), Linz, Austria, 4 p. 5–8 February 2019
Grabisch, M., Marichal, J.-L., Mesiar, J.-L., Pap, E.: Aggregation Functions: Encyclopedia of Mathematics and Its Applications, no. 127. Cambridge University Press, Cambridge (2009)
Kiss, G., Somlai, G.: A characterization of n-associative, monotone, idempotent functions on an interval that have neutral elements. Semigroup Forum 96(3), 438– 451 (2018)
Mesiarová-Zemánková, M.: A note on decomposition of idempotent uninorms into an ordinal sum of singleton semigroups. Fuzzy Sets Syst. 299, 140–145 (2016)