Communication poster (Colloques, congrès, conférences scientifiques et actes)
A Markov Chain Monte Carlo Approach for Estimating Daily Activity Patterns
SCHEFFER, Ariane Hélène Marie; Bandiera, Claudia; Cantelmo, Guido et al.
2019Transportation Research Board TRB Annual Meeting
 

Documents


Texte intégral
TRR-S-18-04900.pdf
Postprint Auteur (1.89 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Markov Chain Monte Carlo; Travel Demand Estimation; Utility Theory
Résumé :
[en] Determining the purpose of trips brings is a fundamental information to evaluate travel demand during the day and to predict longer-term impacts on the population’s travel behavior. The concept of tours is the most suited to consider the value of a daily scheduling of individuals and travel interdependencies. However, the meticulous care required for both collecting data of high quality and interpret results of advanced demand models are frequently considered as major drawbacks. The objective of this study is to incorporate into a standard trip-based model some inherent concepts of activity-based models in order to enhance the representation of travel behavior. The main focus of this work is to infer, employing utility theory, the trip purpose of a population, at a zonal level. Making use of Markov Chain Monte Carlo, a set of parameters is estimated in order to retrieve tour-based primitives of the demand. The main advantage of this methodology is the low requirements in terms of data, as no individual information are used, and the good interpretation of the model. Estimated parameters of the priors set a utility-based probability function for departure time, which allows to have a dynamic overview of the demand. In order to account for the tour consistency of travel decisions, a duration constraint is added to the model. The proposed model is applied to the region of Luxembourg city and the results show the potential of the methodologies for dividing an observed demand based on the activity at destination.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SCHEFFER, Ariane Hélène Marie ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Bandiera, Claudia
Cantelmo, Guido
Cipriani, Ernesto
VITI, Francesco  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Markov Chain Monte Carlo Approach for Estimating Daily Activity Patterns
Date de publication/diffusion :
janvier 2019
Nom de la manifestation :
Transportation Research Board TRB Annual Meeting
Date de la manifestation :
13-17 January 2019
Manifestation à portée :
International
Focus Area :
Computational Sciences
Intitulé du projet de recherche :
MERLIN - Multimodal Electrified Infrastructure Planning
Organisme subsidiant :
EU-FEDER
Disponible sur ORBilu :
depuis le 11 août 2019

Statistiques


Nombre de vues
331 (dont 25 Unilu)
Nombre de téléchargements
155 (dont 19 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu