Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Search-based Test and Improvement of Machine-Learning-Based Anomaly Detection Systems
CORDY, Maxime; Muller, Steve; PAPADAKIS, Mike et al.
2019In ACM SIGSOFT International Symposium on Software Testing and Analysis
Peer reviewed
 

Files


Full Text
issta19main-p399-p-ee7da60-41285M-submitted.pdf
Author postprint (799.01 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Security Design and Validation Research Group (SerVal)
Disciplines :
Computer science
Author, co-author :
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Muller, Steve
PAPADAKIS, Mike ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
External co-authors :
no
Language :
English
Title :
Search-based Test and Improvement of Machine-Learning-Based Anomaly Detection Systems
Publication date :
2019
Event name :
ACM SIGSOFT International Symposium on Software Testing and Analysis
Event date :
from 15-7-2019 to 19-7-2019
Audience :
International
Main work title :
ACM SIGSOFT International Symposium on Software Testing and Analysis
Peer reviewed :
Peer reviewed
FnR Project :
FNR11686509 - Continuous Development With Mutation Analysis And Testing, 2017 (01/09/2018-31/08/2021) - Michail Papadakis
Name of the research project :
CODEMATES
Funders :
FNR - Fonds National de la Recherche [LU]
Available on ORBilu :
since 03 August 2019

Statistics


Number of views
188 (9 by Unilu)
Number of downloads
340 (22 by Unilu)

Scopus citations®
 
5
Scopus citations®
without self-citations
4
OpenCitations
 
4
WoS citations
 
2

Bibliography


Similar publications



Contact ORBilu