Article (Scientific journals)
Explicit Kummer theory for the rational numbers
PERUCCA, Antonella; SGOBBA, Pietro; TRONTO, Sebastiano
2020In International Journal of Number Theory
Peer Reviewed verified by ORBi
 

Files


Full Text
PeruccaSgobbaTronto-Kummer-rational.pdf
Author preprint (346.11 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Number fields; Kummer theory; Degree; Cyclotomic fields
Abstract :
[en] Let G be a finitely generated multiplicative subgroup of Q* having rank r. The ratio between n^r and the Kummer degree [Q(\zeta_m,\sqrt[n]{G}) : Q(\zeta_m)], where n divides m, is bounded independently of n and m. We prove that there exist integers m_0, n_0 such that the above ratio depends only on G, \gcd(m,m_0), and \gcd(n,n_0). Our results are very explicit and they yield an algorithm that provides formulas for all the above Kummer degrees (the formulas involve a finite case distinction).
Disciplines :
Mathematics
Author, co-author :
PERUCCA, Antonella  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
SGOBBA, Pietro ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
TRONTO, Sebastiano ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
no
Language :
English
Title :
Explicit Kummer theory for the rational numbers
Publication date :
2020
Journal title :
International Journal of Number Theory
ISSN :
1793-0421
Publisher :
World Scientific Publishing Co., Singapore
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 04 April 2019

Statistics


Number of views
265 (30 by Unilu)
Number of downloads
199 (13 by Unilu)

Scopus citations®
 
4
Scopus citations®
without self-citations
1
OpenAlex citations
 
7
WoS citations
 
5

Bibliography


Similar publications



Contact ORBilu