Article (Périodiques scientifiques)
Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
Bellenberg, Soren; Buetti-Dinh, Antoine; Galli, Vanni et al.
2018In Applied and Environmental Microbiology, 84 (20)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Bellenberg(2018)AEM.pdf
Postprint Éditeur (1.79 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
biofilm dispersal; biofilm formation; biofilms; bioleaching; diffusible soluble factor; fluorescent image analysis; image analysis; microbe-mineral interaction; microbe-mineral interactions; quorum sensing
Résumé :
[en] Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the L. ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. ferriphilum and S. thermosulfidooxidans upon the addition of DSF family signal compounds.IMPORTANCE The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. ferriphilum and S. thermosulfidooxidans.
Disciplines :
Biotechnologie
Auteur, co-auteur :
Bellenberg, Soren
Buetti-Dinh, Antoine
Galli, Vanni
Ilie, Olga
HEROLD, Malte ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Christel, Stephan
Boretska, Mariia
Pivkin, Igor V.
WILMES, Paul ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Sand, Wolfgang
Vera, Mario
Dopson, Mark
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
Date de publication/diffusion :
2018
Titre du périodique :
Applied and Environmental Microbiology
ISSN :
0099-2240
eISSN :
1098-5336
Maison d'édition :
American Society for Microbiology, Washington, Etats-Unis - District de Columbia
Volume/Tome :
84
Fascicule/Saison :
20
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
FNR - Fonds National de la Recherche
Commentaire :
Copyright (c) 2018 American Society for Microbiology.
Disponible sur ORBilu :
depuis le 03 janvier 2019

Statistiques


Nombre de vues
200 (dont 9 Unilu)
Nombre de téléchargements
3 (dont 3 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
9
citations OpenAlex
 
22
citations WoS
 
17

Bibliographie


Publications similaires



Contacter ORBilu