Article (Périodiques scientifiques)
Ecological Advanced Driver Assistance System for Optimal Energy Management in Electric Vehicles
SAJADI ALAMDARI, Seyed Amin; VOOS, Holger; Darouach, Mohamed
2018In IEEE Intelligent Transportation Systems Magazine
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
ITSM_FINAL VERSION.pdf
Preprint Auteur (5.51 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Electric Vehicle; Advanced Driver Assistance System; Nonlinear Model Predictive Control
Résumé :
[en] Battery Electric Vehicles have a high potential in modern transportation, however, they are facing limited cruising range. The driving style, the road geometries including slopes, curves, the static and dynamic traffic conditions such as speed limits and preceding vehicles have their share of energy consumption in the host electric vehicle. Optimal energy management based on a semi-autonomous ecological advanced driver assistance system can improve the longitudinal velocity regulation in a safe and energy-efficient driving strategy. The main contribution of this paper is the design of a real-time risk-sensitive nonlinear model predictive controller to plan the online cost-effective cruising velocity in a stochastic traffic environment. The basic idea is to measure the relevant states of the electric vehicle at runtime, and account for the road slopes, the upcoming curves, and the speed limit zones, as well as uncertainty in the preceding vehicle behavior to determine the energy-efficient velocity profile. Closed-loop Entropic Value-at-Risk as a coherent risk measure is introduced to quantify the risk involved in the system constraints violation. The obtained simulation and field experimental results demonstrate the effectiveness of the proposed method for a semi-autonomous electric vehicle in terms of safe and energy-efficient states regulation and constraints satisfaction.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SAJADI ALAMDARI, Seyed Amin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Darouach, Mohamed;  Université de Lorraine, IUT de Longwy > Centre de Recherche en Automatique de Nancy (CRAN)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Ecological Advanced Driver Assistance System for Optimal Energy Management in Electric Vehicles
Date de publication/diffusion :
27 novembre 2018
Titre du périodique :
IEEE Intelligent Transportation Systems Magazine
ISSN :
1939-1390
Maison d'édition :
Institute of Electrical and Electronics Engineers, Piscataway, Etats-Unis - New Jersey
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR7041503 - Stochastic Model Predictive Control For Eco-driving Assistance Systems In Electric Vehicles, 2013 (15/06/2014-14/06/2018) - Seyed Amin Sajadi Alamdari
Intitulé du projet de recherche :
Stochastic Model Predictive Control for Eco-Driving Assistance Systems in Electric Vehicles
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 11 décembre 2018

Statistiques


Nombre de vues
211 (dont 12 Unilu)
Nombre de téléchargements
500 (dont 3 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
15
citations OpenAlex
 
20
citations WoS
 
14

Bibliographie


Publications similaires



Contacter ORBilu