Pas de texte intégral
Communication poster (Colloques, congrès, conférences scientifiques et actes)
Facilitating Privacy-preserving Recommendation-as-a-Service with Machine Learning
WANG, Jun; DELERUE ARRIAGA, Afonso; Tang, Qiang et al.
2018the 2018 ACM SIGSAC Conference
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Privacy-preserving; recommender system; homomorphic encryption
Résumé :
[en] Machine-Learning-as-a-Service has become increasingly popular, with Recommendation-as-a-Service as one of the representative examples. In such services, providing privacy protection for users is an important topic. Reviewing privacy-preserving solutions which were proposed in the past decade, privacy and machine learning are often seen as two competing goals at stake. Though improving cryptographic primitives (e.g., secure multi-party computation (SMC) or homomorphic encryption (HE)) or devising sophisticated secure protocols has made a remarkable achievement, but in conjunction with state-of-the-art recommender systems often yields far-from-practical solutions. We tackle this problem from the direction of machine learning. We aim to design crypto-friendly recommendation algorithms, thus to obtain efficient solutions by directly using existing cryptographic tools. In particular, we propose an HE-friendly recommender system, refer to as CryptoRec, which (1) decouples user features from latent feature space, avoiding training the recommendation model on encrypted data; (2) only relies on addition and multiplication operations, making the model straightforwardly compatible with HE schemes. The properties turn recommendation-computations into a simple matrix-multiplication operation. To further improve efficiency, we introduce a sparse-quantization-reuse method which reduces the recommendation-computation time by $9\times$ (compared to using CryptoRec directly), without compromising the accuracy. We demonstrate the efficiency and accuracy of CryptoRec on three real-world datasets. CryptoRec allows a server to estimate a user's preferences on thousands of items within a few seconds on a single PC, with the user's data homomorphically encrypted, while its prediction accuracy is still competitive with state-of-the-art recommender systems computing over clear data. Our solution enables Recommendation-as-a-Service on large datasets in a nearly real-time (seconds) level.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Applied Security and Information Assurance Group (APSIA)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
WANG, Jun ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
DELERUE ARRIAGA, Afonso  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > APSIA
Tang, Qiang
RYAN, Peter ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Facilitating Privacy-preserving Recommendation-as-a-Service with Machine Learning
Date de publication/diffusion :
octobre 2018
Nom de la manifestation :
the 2018 ACM SIGSAC Conference
Date de la manifestation :
from 15-10-2018 to 19-10-2018
Manifestation à portée :
International
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR5856658 - Boosting Security And Efficiency In Recommender Systems, 2013 (15/04/2014-14/04/2017) - Qiang Tang
Disponible sur ORBilu :
depuis le 16 novembre 2018

Statistiques


Nombre de vues
274 (dont 9 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

OpenCitations
 
4
citations OpenAlex
 
7
citations WoS
 
6

Bibliographie


Publications similaires



Contacter ORBilu