Article (Périodiques scientifiques)
Predicting Tungsten Oxide Reduction with the Extended Discrete Element Method
ESTUPINAN DONOSO, Alvaro Antonio; PETERS, Bernhard
2015In Advances in Powder Metallurgy & Particulate Materials, (Proceedings of the 2015 International Conference on Powder Metallurgy Particulate Materials), p. 02.35--02.48
Peer reviewed
 

Documents


Texte intégral
AEstupinan_submited_corrected.pdf
Postprint Auteur (530.92 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
tungsten; Powder metallurgy; Xdem
Résumé :
[en] During technical reduction of tungsten trioxide powder in hydrogen atmospheres, the local temperature and the ratio of water vapor to hydrogen partial pressures govern the conversion rate. Water vapor removal rate not only affects the conversion progress, but also drives the final metallic tungsten powder size distribution. The amount of water vapor inside the bed depends on the hydrogen flow, the height of powder beds and the size characteristics of the initial oxide. The chemically aggressive environment and high temperatures make it difficult to do the measurements inside the reactors for studying or control the process. On the other hand, multi-physics computational techniques help to understand the evolution of the complex phenomena involved in the process. This contribution presents the eXtended Discrete Element Method as a novel approach to investigate the complex thermochemical conversion of tungsten oxides into tungsten metal. The recently emerged technique is based on a coupled discrete and continuous numerical simulation framework. In the study, an advanced and consolidated two-phase Computational Fluid Dynamics (CFD) tool for porous media represents gaseous phase penetration and transport. The discrete feedstock description includes one-dimensional and transient distributions of temperature and species for each powder particle. This allows gaining a new and valuable insight into the process, which may lead into finer tungsten powder production, and consequently more resistant tungsten carbide products. Transient and spatial results for powder composition, gas species as well as a mass loss comparison with experimental data for non-isothermal hydrogen reduction of tungsten trioxide are demonstrated and discussed.
Disciplines :
Science des matériaux & ingénierie
Auteur, co-auteur :
ESTUPINAN DONOSO, Alvaro Antonio  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
PETERS, Bernhard ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Predicting Tungsten Oxide Reduction with the Extended Discrete Element Method
Date de publication/diffusion :
2015
Titre du périodique :
Advances in Powder Metallurgy & Particulate Materials
ISSN :
1546-7724
Maison d'édition :
APMI international, San Diego, Inconnu/non spécifié
Metal Powder Industries Federation, San Diego, Inconnu/non spécifié
Fascicule/Saison :
Proceedings of the 2015 International Conference on Powder Metallurgy Particulate Materials
Pagination :
02.35--02.48
Peer reviewed :
Peer reviewed
Commentaire :
978-1-943694-01-3 02
Disponible sur ORBilu :
depuis le 13 novembre 2018

Statistiques


Nombre de vues
155 (dont 11 Unilu)
Nombre de téléchargements
6 (dont 5 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
0

Bibliographie


Publications similaires



Contacter ORBilu