Article (Périodiques scientifiques)
Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity
Koronaki, E.D.; Gkinis, P.A.; BEEX, Lars et al.
2018In Computers and Chemical Engineering, 121, p. 148-157
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S0098135418306744-main.pdf
Postprint Éditeur (1.71 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Multiplicity of states; Support Vector Machines; Classification; Reduced order modeling; Artificial Neural Networks; Data-driven models; Chemical Vapor Deposition
Résumé :
[en] This paper presents an equation-free, data-driven approach for reduced order modeling of a Chemical Vapor Deposition (CVD) process. The proposed approach is based on process information provided by detailed, high-fidelity models, but can also use spatio-temporal measurements. The Reduced Order Model (ROM) is built using the method-of-snapshots variant of the Proper Orthogonal Decomposition (POD) method and Artificial Neural Networks (ANN) for the identification of the time-dependent coefficients. The derivation of the model is completely equation-free as it circumvents the projection of the actual equations onto the POD basis. Prior to building the model, the Support Vector Machine (SVM) supervised classification algorithm is used in order to identify clusters of data corresponding to (physically) different states that may develop at the same operating conditions due to the inherent nonlinearity of the process. The different clusters are then used for ANN training and subsequent development of the ROM. The results indicate that the ROM is successful at predicting the dynamic behavior of the system in windows of operating parameters where steady states are not unique.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Koronaki, E.D.
Gkinis, P.A.
BEEX, Lars ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Theodoropoulos, C.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity
Date de publication/diffusion :
septembre 2018
Titre du périodique :
Computers and Chemical Engineering
ISSN :
0098-1354
eISSN :
1873-4375
Maison d'édition :
Elsevier, Oxford, Royaume-Uni
Volume/Tome :
121
Pagination :
148-157
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 12 novembre 2018

Statistiques


Nombre de vues
234 (dont 16 Unilu)
Nombre de téléchargements
3 (dont 3 Unilu)

citations Scopus®
 
20
citations Scopus®
sans auto-citations
11
OpenCitations
 
10
citations OpenAlex
 
22
citations WoS
 
21

Bibliographie


Publications similaires



Contacter ORBilu