Thèse de doctorat (Mémoires et thèses)
Stochastic Model Predictive Control for Eco-Driving Assistance Systems in Electric Vehicles
SAJADI ALAMDARI, Seyed Amin
2018
 

Documents


Texte intégral
PhD-FSTC-2018-35-compressed.pdf
Postprint Éditeur (12.39 MB)
PhD Thesis
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Stochastic Model Predictive Control; Driver Assistance System; Electric Vehicles
Résumé :
[en] Electric vehicles are expected to become one of the key elements of future sustainable transportation systems. The first generation of electric cars are already commercially available but still, suffer from problems and constraints that have to be solved before a mass market might be created. Key aspects that will play an important role in modern electric vehicles are range extension, energy efficiency, safety, comfort as well as communication. An overall solution approach to integrating all these aspects is the development of advanced driver assistance systems to make electric vehicles more intelligent. Driver assistance systems are based on the integration of suitable sensors and actuators as well as electronic devices and software-enabled control functionality to automatically support the human driver. Driver assistance for electric vehicles will differ from the already used systems in fuel-powered cars such as electronic stability programs, adaptive cruise control etc. in a way that they must support energy efficiency while the system itself must also have a low power consumption. In this work, an eco-driving functionality as the first step towards those new driver assistance systems for electric vehicles will be investigated. Using information about the internal state of the car, navigation information as well as advanced information about the environment coming from sensors and network connections, an algorithm will be developed that will adapt the speed of the vehicle automatically to minimize energy consumption. From an algorithmic point of view, a stochastic model predictive control approach will be applied and adapted to the special constraints of the problem. Finally, the solution will be tested in simulations as well as in first experiments with a commercial electric vehicle in the SnT Automation & Robotics Research Group (SnT ARG).
Centre de recherche :
SnT - Interdisciplinary Centre for Security, Reliability and Trust
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SAJADI ALAMDARI, Seyed Amin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Langue du document :
Anglais
Titre :
Stochastic Model Predictive Control for Eco-Driving Assistance Systems in Electric Vehicles
Date de soutenance :
25 avril 2018
Nombre de pages :
263
Institution :
Unilu - University of Luxembourg, Luxembourg
Intitulé du diplôme :
Doctor of Engineering
Promoteur :
Président du jury :
Membre du jury :
Wang, Meng
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR7041503 - Stochastic Model Predictive Control For Eco-driving Assistance Systems In Electric Vehicles, 2013 (15/06/2014-14/06/2018) - Seyed Amin Sajadi Alamdari
Intitulé du projet de recherche :
Stochastic Model Predictive Control for Eco-Driving Assistance Systems in Electric Vehicles
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 18 juillet 2018

Statistiques


Nombre de vues
542 (dont 57 Unilu)
Nombre de téléchargements
1519 (dont 32 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu