Article (Périodiques scientifiques)
Nested Graphs: a model to efficiently distribute multi-agent systems on HPC clusters
ROUSSET, Alban; Herrmann, Bénédicte; Lang, Christophe et al.
2017In Concurrency and Computation: Practice and Experience, 30 (7), p. 22
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
ccpeArticle.pdf
Postprint Éditeur (751.85 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
High Performance Computing; multi-agent simulation; Nested Graph; parallel
Résumé :
[en] Computational simulation is becoming increasingly important in numerous research fields. Depending on the modeled system, several methods such as differential equations or Monte-Carlo simulations may be used to represent the system behavior. The amount of computation and memory needed to run a simulation depends on its size and precision and large simulations usually lead to long runs thus requiring to adapt the model to a parallel system. Complex systems are often simulated using Multi-agent systems (MAS). While linear system based models benefit from a large set of tools to take advantage of parallel resources, multi-agent systems suffer from a lack of platforms that ease the use of such resources. In this paper, we propose the use of Nested Graphs for a new modeling approach that allows the design of large, complex and multi-scale multi-agent models which can efficiently be distributed on parallel resources. Nested Graphs are formally defined and are illustrated on the well-known predator-prey model. We also introduce PDMAS (Parallel and Distributed Multi-Agent System) a platform that implements the Nested Graph modeling approach to ease the distribution of multi-agent models on High Performance Computing clusters. Performance results are presented to validate the efficiency of the resulting models.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ROUSSET, Alban ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Herrmann, Bénédicte;  Femto-ST Institute, Univ. Bourgogne Franche-Comté/CNRS Besançon - France
Lang, Christophe;  Femto-ST Institute, Univ. Bourgogne Franche-Comté/CNRS Besançon - France
Philippe, Laurent;  Femto-ST Institute, Univ. Bourgogne Franche-Comté/CNRS Besançon - France
Bride, Hadrien;  Femto-ST Institute, Univ. Bourgogne Franche-Comté/CNRS Besançon - France
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Nested Graphs: a model to efficiently distribute multi-agent systems on HPC clusters
Date de publication/diffusion :
07 novembre 2017
Titre du périodique :
Concurrency and Computation: Practice and Experience
ISSN :
1532-0626
eISSN :
1532-0634
Maison d'édition :
John Wiley & Sons, Inc. -
Volume/Tome :
30
Fascicule/Saison :
7
Pagination :
22
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 18 juillet 2018

Statistiques


Nombre de vues
121 (dont 4 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
2
citations OpenAlex
 
2
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu