Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
IMPROVING THE CAPACITY OF VERY DEEP NETWORKS WITH MAXOUT UNITS
OYEDOTUN, Oyebade; SHABAYEK, Abd El Rahman; AOUADA, Djamila et al.
2018In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
Peer reviewed
 

Documents


Texte intégral
Oyebade_ICASSP2018_CR_V01.pdf
Preprint Auteur (622.42 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Image classification; deep networks; residual learning; neural networks
Résumé :
[en] Deep neural networks inherently have large representational power for approximating complex target functions. However, models based on rectified linear units can suffer reduction in representation capacity due to dead units. Moreover, approximating very deep networks trained with dropout at test time can be more inexact due to the several layers of non-linearities. To address the aforementioned problems, we propose to learn the activation functions of hidden units for very deep networks via maxout. However, maxout units increase the model parameters, and therefore model may suffer from overfitting; we alleviate this problem by employing elastic net regularization. In this paper, we propose very deep networks with maxout units and elastic net regularization and show that the features learned are quite linearly separable. We perform extensive experiments and reach state-of-the-art results on the USPS and MNIST datasets. Particularly, we reach an error rate of 2.19% on the USPS dataset, surpassing the human performance error rate of 2.5% and all previously reported results, including those that employed training data augmentation. On the MNIST dataset, we reach an error rate of 0.36% which is competitive with the state-of-the-art results.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Sciences informatiques
Auteur, co-auteur :
OYEDOTUN, Oyebade ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHABAYEK, Abd El Rahman  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
IMPROVING THE CAPACITY OF VERY DEEP NETWORKS WITH MAXOUT UNITS
Date de publication/diffusion :
21 février 2018
Nom de la manifestation :
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Calgary, Alberta, Canada
Date de la manifestation :
15–20 April 2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
Peer reviewed :
Peer reviewed
Organisme subsidiant :
This work was funded by the National Research Fund (FNR), Luxembourg, under the project reference R-AGR-0424-05-D/Bjorn Ottersten
Disponible sur ORBilu :
depuis le 21 février 2018

Statistiques


Nombre de vues
245 (dont 24 Unilu)
Nombre de téléchargements
441 (dont 35 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
6

Bibliographie


Publications similaires



Contacter ORBilu