Article (Périodiques scientifiques)
Addressing volumetric locking and instabilities by selective integration in smoothed finite elements
Hung, Nguyen-Xuan; BORDAS, Stéphane; Hung, Nguyen-Dang
2009In Communications in Numerical Methods in Engineering, 25 (1), p. 19-34
Peer reviewed
 

Documents


Texte intégral
Addressing volumetric locking and instabilities.pdf
Postprint Éditeur (293.14 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Accuracy; Convergence; Finite element method; Instabilities; Non-local strain; Rank deficiency; Reduced integration; Selective integration; Smoothed strains; Stabilized conforming nodal integration; Volumetric locking; Incompressible flow; Integration; Standards; Strain; Vibration measurement
Résumé :
[en] This paper promotes the development of a novel family of finite elements with smoothed strains, offering remarkable properties. In the smoothed finite element method (FEM), elements are divided into subcells. The strain at a point is defined as a weighted average of the standard strain field over a representative domain. This yields superconvergent stresses, both in regular and singular settings, as well as increased accuracy, with slightly lower computational cost than the standard FEM. The one-subcell version that does not exhibit volumetric locking yields more accurate stresses but less accurate displacements and is equivalent to a quasi-equilibrium FEM. It is also subject to instabilities. In the limit where the number of subcells goes to infinity, the standard FEM is recovered, which yields more accurate displacements and less accurate stresses. The specific contribution of this paper is to show that expressing the volumetric part of the strain field using a one-subcell formulation is sufficient to get rid of volumetric locking and increase the displacement accuracy compared with the standard FEM when the single subcell version is used to express both the volumetric and deviatoric parts of the strain. Selective integration also alleviates instabilities associated with the single subcell element, which are due to rank deficiency. Numerical examples on various compressible and incompressible linear elastic test cases show that high accuracy is retained compared with the standard FEM without increasing computational cost.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Hung, Nguyen-Xuan;  Division of Computational Mechanics, Department of Mathematics and Informatics, University of Natural Sciences-VNU-HCM, 227 Nguyen Van Cu, Viet Nam
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Hung, Nguyen-Dang;  LTAS-Division of Fracture Mechanics, University of Liège, Bâtiment B52/3 Chemin des Chevreuils 1, B-4000 Liège 1, Belgium
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Addressing volumetric locking and instabilities by selective integration in smoothed finite elements
Date de publication/diffusion :
2009
Titre du périodique :
Communications in Numerical Methods in Engineering
ISSN :
1069-8299
Volume/Tome :
25
Fascicule/Saison :
1
Pagination :
19-34
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 17 février 2018

Statistiques


Nombre de vues
143 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
53
citations Scopus®
sans auto-citations
35
OpenCitations
 
28
citations OpenAlex
 
53
citations WoS
 
34

Bibliographie


Publications similaires



Contacter ORBilu