[en] In this paper, the influence of microscopic parameters on the macroscopic behaviour of polycrystalline materials under different loading configuration is investigated. Linear elastic grains with zero thickness cohesive interfaces are considered at the microscale with in depth introduction of effective parameters. A multiscale method based on homogenisation technique is employed to bridge the scales. In order to minimize the homogenisation error, a representative volume element (RVE) of the microscopic structure is statistically determined to be used in the numerical analysis. For each loading condition of the RVE, several numerical examinations are conducted to illustrate the relationship between the microscopic parameters. Finally, the effects of microscopic critical fracture energies, maximum tensile and shear strengths of grain interfaces on the mechanical properties, i.e. stress-strain curve and yield surface at the macroscale are discussed in details. It is shown that macroscopic yield surface and stress strain curves can be used to characterise the microscopic properties.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Akbari, Ahmad
Kerfriden, Pierre
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
On the effect of grains interface parameters on the macroscopic properties of polycrystalline materials
Date de publication/diffusion :
février 2018
Titre du périodique :
Computers and Structures
ISSN :
0045-7949
Maison d'édition :
Elsevier, Royaume-Uni
Volume/Tome :
196
Pagination :
355-368
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet européen :
FP7 - 279578 - REALTCUT - Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery
Organisme subsidiant :
EPSRC - Engineering and Physical Sciences Research Council Fonds National de la Recherche FWO-FNR grant ERC STG grant Cardiff School of Engineering FP7 IRSES programme MULTIFRAC CE - Commission Européenne