Article (Scientific journals)
Functional inequalities on manifolds with non-convex boundary
Cheng, Li Juan; Thalmaier, Anton; Thompson, James
2018In Science China Mathematics, 61 (8), p. 1421-1436
Peer Reviewed verified by ORBi
 

Files


Full Text
SciMathChina.pdf
Author preprint (520.27 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Ricci curvature; gradient inequality; log-Sobolev inequality
Abstract :
[en] In this article, new curvature conditions are introduced to establish functional inequalities including gradient estimates, Harnack inequalities and transportation-cost inequalities on manifolds with non-convex boundary.
Disciplines :
Mathematics
Author, co-author :
Cheng, Li Juan ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Thalmaier, Anton ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Thompson, James ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
no
Language :
English
Title :
Functional inequalities on manifolds with non-convex boundary
Publication date :
13 July 2018
Journal title :
Science China Mathematics
ISSN :
1869-1862
Publisher :
Springer
Volume :
61
Issue :
8
Pages :
1421-1436
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR7628746 - Geometry Of Random Evolutions, 2014 (01/03/2015-28/02/2018) - Anton Thalmaier
Name of the research project :
R-AGR-0517 - IRP15 - AGSDE (20150901-20190630) - THALMAIER Anton
Funders :
University of Luxembourg - UL
Available on ORBilu :
since 13 November 2017

Statistics


Number of views
243 (51 by Unilu)
Number of downloads
550 (27 by Unilu)

Scopus citations®
 
3
Scopus citations®
without self-citations
2
OpenCitations
 
2
WoS citations
 
3

Bibliography


Similar publications



Contact ORBilu