[en] We describe the application in security of shells of
Cholesteric Liquid Crystals (ChLCs). Such shells have a diameter
in the microns range and can be gathered in hundreds in a
surface area as small as a nail’s head. Because of their structural
properties, a bundle of them reflects light, creating colorful
patterns that we argue to be unique and computationally hard
to predict. We argue also that the bundle itself is unclonable.
These are typical properties of Physically Unclonable Functions,
a family to which shells of ChLCs belong too. Herein we discuss
their physical and security properties and their potential use in
object authentication.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Applied Security and Information Assurance Group (APSIA)
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
LENZINI, Gabriele ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Samir, Ouchani
ROENNE, Peter ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
RYAN, Peter ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Geng, Yong
NOH, Junghyun ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
LAGERWALL, Jan ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Security in the Shell : An Optical Physical Unclonable Function made of Shells of Cholesteric Liquid Crystals
Date de publication/diffusion :
02 octobre 2017
Nom de la manifestation :
9th IEEE Workshop on Information Forensics and Security
Lieu de la manifestation :
Rennes, France
Date de la manifestation :
7-9 December
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proc. of the 9th IEEE Workshop on Information Forensics and Security
[AH13] C. C. Aggarwal and J. Han. A Survey of RFID Data Processing, chapter Managing and Mining Sensor Data, pages 349-382. Springer, Boston, MA, 2013.
[AMS+11b] F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, and C. Wachsmann. A Formal Foundation for the Security Features of Physical Functions. In 2011 IEEE Symposium on Security and Privacy (SP), May 22-25, 2011, Oakland, CA, US. Proc., pages 397-412.
[BSQ10] P. Bulens, F. X. Standaert, and J. J. Quisquater. How to strongly link data and its medium: The paper case. IET Information Security, 4(3):125-136, 2010.
[DBV+14] M. Diephuis and F. Beekhof and S. Voloshynovskiy and T. Holotyak and N. Standardo and B. Keel A framework for fast and secure packaging identification on mobile phones Media Watermarking, Security, and Forensics 2014, San Francisco, CA, USA, February 2, 2014. Proc., SPIE Proceedings.
[GHM+14] S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. H. Pinkse. Quantum-secure authentication of a physical unclonable key. Optica, 1(6):421-424, 2014.
[GNDO+16] Y. Geng, J. H. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall. High-fidelity Spherical Cholesteric Liquid Crystal Bragg Reflectors Generating Unclonable Patterns for Secure Authentication. Sci. Rep., 6:26840, 2016.
[HBF07] D. E. Holcomb, W. P. Burleson, and K. Fu. Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags. In 2007, Int. Conf. on RFID Security (RFIDSec), Malaga, Spain, 11-13 July 2007.
[HYKD14] C. Herder, M. Yu, F. Koushanfar, and S. Devadas. Physical unclonable functions and applications: A tutorial. Proceedings of the IEEE, 102(8):1126-1141, 2014.
[KJAB16] A. Khattab, Z. Jeddi, E. Amini, and M. Bayoumi. RFID Security Threats and Basic Solutions, chapter RFID Security, pages 27-41. Analog Circuits and Signal Processing. Springer, 2016.
[KP04] H. Knospe and H. Pohl. RFID Security. Information Security Technical Report, 9(4):39-50, 2004.
[LLG+05] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(10):1200-1205, Oct 2005.
[NLDOL14] J. Noh, H.-L. Liang, I. Drevensek-Olenik, and J. P. F. Lagerwall. Tuneable multicolored patterns from photonic cross communication between cholesteric liquid crystal droplets. J. Mater. Chem. C, 2(5):806-810, 2014.
[PM15] R. Plaga and D. Merli. A New Definition and Classification of Physical Unclonable Functions. In Proc. of 2nd Work. on Cryptography and Security in Computing Systems (CS2 '15), Amsterdam, The Netherland, Jan. 19, 2015. Proc., pages 7:7-7:12, ACM, New York, NY, USA, 2015
[PRTG02] R. Pappu, B Recht, J. Taylor, and N. Gershenfeld. Physical One-Way Functions. Science, 297:2026-2030, September 2002.
[ ŠTO05] B. Škorić, P. Tuyls, and W. Ophey. Robust Key Extraction from Physical Uncloneable Functions. In Applied Cryptography and Network Security: Third International Conference, ACNS 2005, New York, NY, USA, June 7-10, 2005. Proc., pages 407-422. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.
[TŠ07] P. Tuyls and B. Škorić. Strong Authentication with Physical Unclonable Functions, pages 133-148. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.