localization; stepped frequency modulation; joint range-DoA estimation; sparse sensing
Résumé :
[en] Multi-target localization, warranted in emerging
applications like autonomous driving, requires targets to be
perfectly detected in the distributed nodes with accurate range
measurements. This implies that high range resolution is crucial
in distributed localization in the considered scenario. This work
proposes a new framework for multi-target localization, addressing
the demand for the high range resolution in automotive applications
without increasing the required bandwidth. In particular,
it employs sparse stepped frequency waveform and infers the
target ranges by exploiting sparsity in target scene. The range
measurements are then sent to a fusion center where direction of
arrival estimation is undertaken. Numerical results illustrate the
impact of range resolution on multi-target localization and the
performance improvement arising from the proposed algorithm
in such scenarios.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
SEDIGHI, Saeid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHANKAR, Bhavani ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
MALEKI, Sina ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Multi-Target Localization in Asynchronous MIMO Radars Using Sparse Sensing
Date de publication/diffusion :
2017
Nom de la manifestation :
IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Curaçao, Dutch Antilles, Pays-Bas
Date de la manifestation :
10-12-2017 to 13-12-2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)