[en] We present an approach for computing long-range van der Waals (vdW) interactions between complex
molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic fluctuations based on density functional theory in the former with continuum descriptions of strongly shape dependent electromagnetic fields in the latter, thus capturing many-body and multiple scattering effects to all orders. Such a theory is especially important when considering vdW interactions at mesoscopic scales, i.e., between molecules and structured surfaces with features on the scale of molecular sizes, in which case the finite sizes, complex shapes, and resulting nonlocal electronic excitations of molecules are strongly influenced by electromagnetic retardation and wave effects that depend crucially on the shapes of surrounding macroscopic bodies. We show that these effects together can modify vdW interaction energies and forces, as well as molecular shapes deformed by vdW interactions, by orders of magnitude compared to previous treatments based on Casimir-Polder, nonretarded, or pairwise approximations, which are valid only at macroscopically large or atomic-scale separations or in dilute insulating media, respectively.
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres Physique
Auteur, co-auteur :
Venkataram, Prashanth S.
Hermann, Jan
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Rodriguez, Alejandro W.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Unifying Microscopic and Continuum Treatments of van der Waals and Casimir Interactions
Date de publication/diffusion :
2017
Titre du périodique :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Maison d'édition :
American Physical Society, Ridge, Etats-Unis - New York
Volume/Tome :
118
Fascicule/Saison :
1
Pagination :
266802
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science Computational Sciences