Article (Scientific journals)
Constant mean curvature foliation of globally hyperbolic (2+1)-spacetime with particles
Chen, Qiyu; TAMBURELLI, Andrea
2019In Geometriae Dedicata, 201 (281), p. 315
Peer Reviewed verified by ORBi
 

Files


Full Text
CMC.pdf
Author preprint (584.56 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Lorentzian geometry; CMC surfaces
Abstract :
[en] Let M be a globally hyperbolic maximal compact 3-dimensional spacetime locally modelled on Minkowski, anti-de Sitter or de Sitter space. It is well known that M admits a unique foliation by constant mean curvature surfaces. In this paper we extend this result to singular spacetimes with particles (cone singularities of angles less than π along time-like geodesics).
Disciplines :
Mathematics
Author, co-author :
Chen, Qiyu;  Sun Yat-Sen University > School of Mathematics
TAMBURELLI, Andrea ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
yes
Language :
English
Title :
Constant mean curvature foliation of globally hyperbolic (2+1)-spacetime with particles
Publication date :
2019
Journal title :
Geometriae Dedicata
ISSN :
0046-5755
eISSN :
1572-9168
Publisher :
Kluwer Academic Publishers, Dordrecht, Netherlands
Volume :
201
Issue :
281
Pages :
315
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 11 May 2017

Statistics


Number of views
135 (4 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
8
Scopus citations®
without self-citations
4
OpenCitations
 
3
OpenAlex citations
 
8
WoS citations
 
7

Bibliography


Similar publications



Contact ORBilu