Profil

TAMBURELLI Andrea

Main Referenced Co-authors
Bonsante, Francesco (1)
Chen, Qiyu (1)
Seppi, Andrea (1)
Main Referenced Keywords
anti-de Sitter geometry (2); Lorentzian geometry (2); maximal surfaces (2); Anti-de Sitter geometry (1); Anti-de-Sitter geometry (1);
Main Referenced Disciplines
Mathematics (7)

Publications (total 7)

The most downloaded
130 downloads
TAMBURELLI, A. (2018). Anti-de Sitter geometry: convex domains, foliations and volume [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35945 https://hdl.handle.net/10993/35945

The most cited

12 citations (Scopus®)

Bonsante, F., Seppi, A., & TAMBURELLI, A. (2017). On the volume of anti-de Sitter maximal globally hyperbolic three-manifolds. Geometric and Functional Analysis. doi:10.1007/s00039-017-0423-x https://hdl.handle.net/10993/29979

Chen, Q., & TAMBURELLI, A. (2019). Constant mean curvature foliation of globally hyperbolic (2+1)-spacetime with particles. Geometriae Dedicata, 201 (281), 315. doi:10.1007/s10711-018-0393-7
Peer Reviewed verified by ORBi

TAMBURELLI, A. (2019). Entropy degeneration of globally hyperbolic maximal compact anti-de Sitter structures. Differential Geometry and its Applications, 64, 125-135. doi:10.1016/j.difgeo.2019.02.009
Peer Reviewed verified by ORBi

TAMBURELLI, A. (2019). Polynomial quadratic differentials on the complex plane and light-like polygons in the Einstein Universe. Advances in Mathematics, 352, 483-515. doi:10.1016/j.aim.2019.06.015
Peer Reviewed verified by ORBi

TAMBURELLI, A. (2018). Anti-de Sitter geometry: convex domains, foliations and volume [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35945

Bonsante, F., Seppi, A., & TAMBURELLI, A. (2017). On the volume of anti-de Sitter maximal globally hyperbolic three-manifolds. Geometric and Functional Analysis. doi:10.1007/s00039-017-0423-x
Peer Reviewed verified by ORBi

TAMBURELLI, A. (2016). Constant mean curvature foliation of domain of dependence in AdS3. Transactions of the American Mathematical Society.
Peer Reviewed verified by ORBi

TAMBURELLI, A. (2016). Prescribing metrics on the boundary of AdS 3-manifolds. International Mathematics Research Notices. doi:10.1093/imrn/rnw278
Peer Reviewed verified by ORBi

Contact ORBilu