Article (Périodiques scientifiques)
Gradient plasticity crack tip characterization by means of the extended finite element method
Martínez-Pañeda, Emilio; Natarajan, Sundar; BORDAS, Stéphane
2017In Computational Mechanics
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
CM2017.pdf
Postprint Éditeur (1.45 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Strain gradient plasticity theories are being widely used for fracture assessment, as they provide a richer description of crack tip fields by incorporating the influence of geometrically necessary dislocations. Characterizing the behavior at the small scales involved in crack tip deformation requires, however, the use of a very refined mesh within microns to the crack. In this work a novel and efficient gradient-enhanced numerical framework is developed by means of the extended finite element method (X-FEM). A mechanism-based gradient plasticity model is employed and the approximation of the displacement field is enriched with the stress singularity of the gradient-dominated solution. Results reveal that the proposed numerical methodology largely outperforms the standard finite element approach. The present work could have important implications on the use of microstructurally-motivated models in large scale applications. The non-linear X-FEM code developed in MATLAB can be downloaded from www.empaneda.com/codes.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
Martínez-Pañeda, Emilio;  Technical University of Denmark > Mechanical Engineering
Natarajan, Sundar;  Indian Institute of Technology > Mechanical Engineering
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Gradient plasticity crack tip characterization by means of the extended finite element method
Date de publication/diffusion :
2017
Titre du périodique :
Computational Mechanics
ISSN :
0178-7675
eISSN :
1432-0924
Maison d'édition :
Springer Science & Business Media B.V., New York, Etats-Unis - New York
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet européen :
FP7 - 279578 - REALTCUT - Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery
Organisme subsidiant :
European Research Council (ERC Starting Grant Agreement No. 279578)
Ministry of Economy and Competitiveness of Spain (MAT2014-58738-C3-1)
University of Oviedo (UNOV-13-PF)
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 19 mars 2017

Statistiques


Nombre de vues
236 (dont 3 Unilu)
Nombre de téléchargements
1633 (dont 2 Unilu)

citations Scopus®
 
33
citations Scopus®
sans auto-citations
20
OpenCitations
 
30
citations OpenAlex
 
33
citations WoS
 
30

Bibliographie


Publications similaires



Contacter ORBilu